
6.096 Problem Set 2

Due: 14 January 12:30:00

For this problem set, you should be able to put all your code for each section into a single
source/text file (though you may have to comment out earlier parts of your solution to test
later parts). Clearly mark each subsection with comments, and submit a .zip file containing
all your source/text files.

1 Additional Material

1.1 Functions

1.1.1 Default Arguments

Say you have a function with 1 argument, but that argument is usually the same. For
instance, say we want a function that prints a message n times, but most of the time it will
only need to print it once:

1 void printNTimes(char *msg , int n) {

2 for (int i = 0; i < n; ++i) {

3 cout << msg;

4 }

5 }

Rather than writing printNTimes("Some message", 1); every time, C++ allows de
fault arguments to be defined for a function:

1 void printNTimes (char *msg , int n = 1) {
2 for (int i = 0; i < n; ++ i) {
3 cout << msg ;
4 }
5 }

Declaring the function argument as int n = 1 allows us to call the function with printNTimes("Some
message");. The compiler automatically inserts 1 as the second argument.

You may have multiple default arguments for a function:

1 void printNTimes(char *msg = "\n", int n = 1) {

2 for (int i = 0; i < n; ++i) {

3 cout << msg;

1

4 }

5 }

Now, to print one newline, we can simply write printNTimes();. However, C++ does
not allow skipping arguments, so we could not print k newlines by writing printNTimes(k);.
To do that, we’d need to say printNTimes("\n", k);.

1.1.2 Constant Arguments

It’s often useful to specify that arguments to a function should be treated as constants. As
with regular variables, we can declare function arguments to be const:

1 void print(const int n) {

2 cout << n;

3 }

This is particularly useful when we are passing values by reference to a function, but
don’t want to allow the function to make any changes to the original value:

1 void print(const long &x) { // Pass -by -reference avoids overhead

2 // of copying large number

3 cout << x;

4 }

5

6 int main() {

7 long x = 234923592;

8 print(x); // We are guaranteed that x

9 // will not be changed by this

10 return 0;

11 }

In general, if you know a value shouldn’t be changing (particularly a function argument),
you should declare it const. That way, the compiler can catch you if you messed up and
tried to change it somewhere.

1.1.3 Random Number Generation Functions

The C++ standard libraries include the rand() function for generating random numbers
between 0 and RAND MAX (an integer constant defined by the compiler). These numbers
are not truly random; they are a random-seeming but deterministic sequence based on a
particular “seed” number. To make sure we don’t keep getting the same random-number
sequence, we generally use the current time as the seed number. Here is an example of how
this is done:

1 #include <iostream >

2 #include <cstdlib > // C standard library

3 // defines rand(), srand (), RAND_MAX

2

4 #include <ctime > // C time functions - defines time()

5 int main() {

6 srand(time (0)); // Set the seed;

7 // time (0) returns current time as a number

8 int randNum = rand();

9 std::cout << "A random number: " << randNum << endl;

10 return 0;

11 }

1.2 Pointers

1.2.1 Pointers to Pointers

We can have pointers to any type, including pointers to pointers. This is commonly used
in C (and less commonly in C++) to allow functions to set the values of pointers in their
calling functions. For example:

1 void setString(char ** strPtr) {

2 int x;

3 cin >> x;

4 if (x < 0)

5 *strPtr = "Negative!";

6 else

7 *strPtr = "Nonnegative!";

8 }

9

10 int main() {

11 char *str;

12 setString (&str);

13 cout << str; // String has been set by setString

14 return 0;

15 }

1.2.2 Returning Pointers

When you declare a local variable within a function, that variable goes out of scope when
the function exits: the memory allocated to it is reclaimed by the operating system, and
anything that was stored in that memory may be cleared. It therefore usually generates a
runtime error to return a pointer to a local variable:

1 int
2
3
4 }
5

* getRandNumPtr ()
int x = rand () ;
return &x;

{

3

6 int main() {

7 int *randNumPtr = getRandNumPtr ();

8 cout << *randNumPtr; // ERROR

9 return 0;

10 }

Line 8 will likely crash the program or print a strange value, since it is trying to access
memory that is no longer in use – x from getRandNumPtr has been deallocated.

1.3 Arrays and Pointers

1.3.1 Arrays of Pointers

Arrays can contain any type of value, including pointers. One common application of this
is arrays of strings, i.e., arrays of char *’s. For instance:

1 const char *suitNames [] = {"Clubs ", "Diamonds ", "Spades ", "Clubs "};

2 cout << "Enter a suit number (1 -4): ";

3 unsigned int suitNum;

4 cin >> suitNum;

5 if (suitNum <= 3)

6 cout << suitNames[suitNum - 1];

1.3.2 Pointers to Array Elements

It is important to note that arrays in C++ are pointers to continuous regions in memory.
Therefore the following code is valid:

1
2
3
4

const int ARRAY_LEN = 100;
int arr [ARRAY_LEN];
int *p = arr ;
int *q = & arr [0];

Now p and q point to exactly the same location as arr (ie. arr[0]), and p, q and arr
can be used interchangeably. You can also make a pointer to some element in the middle of
an array (similarly to q):

1 int *z = &arr [10];

1.4 Global Scope

We discussed in lecture how variables can be declared at global scope or file scope – if a
variable is declared outside of any function, it can be used anywhere in the file. For anything
besides global constants such as error codes or fixed array sizes, this is usually a bad idea; if
you need to access the same variable from multiple functions, most often you should simply

4

pass the variable around as an argument between the functions. Avoid global variables when
you can.

2 A Simple Function

What would the following program print out? (Answer without using a computer.)

1 void f(const int a = 5)
2 {
3 std :: cout << a *2 << "\n";
4 }
5
6 int a = 123;
7 int main ()
8 {
9 f (1) ;

10 f(a);
11 int b = 3;
12 f(b);
13 int a = 4;
14 f(a);
15 f () ;
16 }

3 Fix the Function

Identify the errors in the following programs, and explain how you would correct them to
make them do what they were apparently meant to do.

3.1

1 #include <iostream >

2

3 int main() {

4 printNum (35);

5 return 0;

6 }

7

8 void printNum(int number) { std::cout << number; }

(Give two ways to fix this code.)

5

3.2

1 #include <iostream >

2

3 void printNum () { std::cout << number; };

4

5 int main() {

6 int number = 35;

7 printNum(number);

8 return 0;

9 }

(Give two ways to fix this code. Indicate which is preferable and why.)

3.3

1 # include <iostream >
2
3 void doubleNumber (int num) { num = num * 2;}
4
5 int main () {
6 int num = 35;
7 doubleNumber (num);
8 std :: cout << num ; // Should print 70
9 return 0;
10 }

(Changing the return type of doubleNumber is not a valid solution.)

3.4

1 #include <iostream >

2 #include <cstdlib > // contains some math functions

3

4 int difference(const int x, const int y) {

5 int diff = abs(x - y); // abs(n) returns absolute value of n

6 }

7

8 int main() {

9 std::cout << difference (24, 1238);

10 return 0;

11 }

6

3.5

1 # include <iostream >
2
3 int sum (const int x , const int y) {
4 return x + y;
5 }
6
7 int main () {
8 std :: cout << sum (1 , 2, 3) ; // Should print 6
9 return 0;
10 }

3.6

1 #include <iostream >

2 const int ARRAY_LEN = 10;

3

4 int main() {

5 int arr[ARRAY_LEN] = {10}; // Note implicit initialization of

6 // other elements

7 int *xPtr = arr , yPtr = arr + ARRAY_LEN - 1;

8 std::cout << *xPtr << ’ ’ << *yPtr; // Should output 10 0

9 return 0;

10 }

4 Sums

Make sure to use const arguments where appropriate throughout this problem (and all the
others).

4.1

Write a single sum function that returns the sum of two integers. Also write the equivalent
function for taking the sum of two doubles.

Explain why, given your functions from part 1, sum(1, 10.0) is a syntax error. (Hint: Think
about promotion and demotion – the conversion of arguments between types in a function
call. Remember that the compiler converts between numerical types for you if necessary.) [1
point]

7

4.2

4.3

Write 2 more functions such that you can find the sum of anywhere between 2 and 4 integers
by writing sum(num1, num2, ...).

4.4

Now write just one function that, using default arguments, allows you to take the sum of
anywhere between 2 and 4 integers. What would happen if you put both this definition and
your 3-argument function from part 3 into the same file, and called sum(3, 5, 7)? Why?

4.5

Write a single sum function capable of handling an arbitrary number of integers. It should
take two arguments, include a loop, and return an integer. (Hint: What data types can you
use to represent an arbitrarily large set of integers in two arguments?)

4.6

Now rewrite your function from 4.5 to use recursion instead of a loop. The function signature
should not change. Thinking about pointer arithmetic may help you.

5 Calculating π

This problem is a bit tricky, but it’s a good exercise in writing a program that actually does
something neat. It will also familiarize you with using random numbers.

Using a “Monte Carlo” method – that is, a randomized simulation – we can compute a
good approximation of π. Consider a circle of radius 1, centered on the origin and circum
scribed by a square, like so:

Imagine that this is a dartboard and that you are tossing darts at it randomly. With
enough darts, the ratio of darts in the circle to total darts thrown should be the ratio between

total darts 4the area of the circle (call it a) and the area of the square (4): = . We can use
darts in circle a

this ratio to calculate a, from which we can then find π = a
2 .

r
We can simplify the math by only considering the first quadrant, calculating the ratio of

the top right square’s area to the area of the single quadrant. Thus, we will actually find a
4 ,

a

and then compute π = 4×
r
4
2 .

We’ll build a function step by step to do all this.

8

}1

5.1

Define variables to store the x and y coordinates of a particular dart throw. Initialize them
to random doubles in the range [0, 1] (simulating one dart throw). (Hint: remember that
rand() returns a value in the range [0, RAND MAX]; we just want to convert that value to
some value in [0, 1].)

5.2

Place your x and y declarations in a loop to simulate multiple dart throws. Assume you have
a variable n indicating how many throws to simulate. Maintain a count (declared outside
the loop) of how many darts have ended up inside the circle. (You can check whether a dart
is within a given radius with the Euclidean distance formula, d2 = x 2 + y 2; you may find the
sqrt function from the <cmath> header useful.)

5.3

Now use your loop to build a π-calculating function. The function should take one argument
specifying the number of dart throws to run (n from part 2). It should return the decimal
value of pi, using the technique outlined above. Be sure to name your function appropriately.
Don’t forget to initialize the random number generator with a seed. You should get pretty
good results for around 5,000,000 dart throws.

6 Array Operations

6.1

Write a function printArray to print the contents of an integer array with the string ", "
between elements (but not after the last element). Your function should return nothing.

6.2

Write a reverse function that takes an integer array and its length as arguments. Your
function should reverse the contents of the array, leaving the reversed values in the original
array, and return nothing.

6.3

Assume the existence of two constants WIDTH and LENGTH. Write a function with the following
signature:

void transpose(const int input [][LENGTH], int output [][WIDTH]);

9

Your function should transpose the WIDTH × LENGTH matrix in input, placing the LENGTH ×
WIDTH transposed matrix into output. (See http://en.wikipedia.org/wiki/Transpose#Examples
for examples of what it means to transpose a matrix.)

6.4

What would happen if, instead of having output be an “out argument,” we simply declared
a new array within transpose and returned that array?

6.5

Rewrite your function from part 2 to use pointer-offset notation instead of array-subscript
notation.

7 Pointers and Strings

7.1

Write a function that returns the length of a string (char *), excluding the final NULL
character. It should not use any standard-library functions. You may use arithmetic and
dereference operators, but not the indexing operator ([]).

7.2

Write a function that swaps two integer values using call-by-reference.

7.3

Rewrite your function from part 2 to use pointers instead of references.

7.4

Write a function similar to the one in part 3, but instead of swapping two values, it swaps
two pointers to point to each other’s values. Your function should work correctly for the
following example invocation:

1 int x = 5, y = 6;
2 int * ptr1 = &x , * ptr2 = &y;
3 swap (& ptr1 , & ptr2);
4 cout << * ptr1 << ’ ’ << * ptr2 ; // Prints "6 5"

10

http://en.wikipedia.org/wiki/Transpose#Examples

7.5

Assume that the following variable declaration has already been made:

1 char *oddOrEven = "Never odd or even ";

Write a single statement to accomplish each of the following tasks (assuming for each one
that the previous ones have already been run). Make sure you understand what happens in
each of them.

1. Create a pointer to a char value named nthCharPtr pointing to the 6th character of
oddOrEven (remember that the first item has index 0). Use the indexing operator.

2. Using pointer arithmetic, update nthCharPtr to point to the 4th character in oddOrEven.

3. Print the value currently pointed to by nthCharPtr.

4. Create a new pointer to a pointer (a char **) named pointerPtr that points to
nthCharPtr.

5. Print the value stored in pointerPtr.

6. Using pointerPtr, print the value pointed to by nthCharPtr.

7. Update nthCharPtr to point to the next character in oddOrEven (i.e. one character
past the location it currently points to).

8. Using pointer arithmetic, print out how far away from the character currently pointed
to by nthCharPtr is from the start of the string.

11

MIT OpenCourseWare
http://ocw.mit.edu

6.096 Introduction to C++
January (IAP) 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Additional Material
	Functions
	Default Arguments
	Constant Arguments
	Random Number Generation Functions

	Pointers
	Pointers to Pointers
	Returning Pointers

	Arrays and Pointers
	Arrays of Pointers
	Pointers to Array Elements

	Global Scope

	A Simple Function
	Fix the Function
	
	
	
	
	
	

	Sums
	
	
	
	
	
	

	Calculating
	
	
	

	Array Operations
	
	
	
	
	

	Pointers and Strings
	
	
	
	
	

