
6.111 Lecture # 11

Topics for today:

Handshaking

'Concurrent' and 'Sequential' statements

(Another example: a counter)
Yet another example: a small ALU
Brief discussion of resource usage

A Less Elaborate handshake

This is often used in things like UARTs which must deal with asynchronous data
streams that they do not control

Sender stabilizes data and sets DAV

Receiver reads data and clears RDAV

Sender de-asserts data and clears DAV

Typically, sender does not wait for /RDAV
before setting new data. This can be used
for detecting 'overrun' errors.

Page 3

Handshaking

Required when multiple lines of input are involved

This is a 'full handshake' Note that both positive going and negative going
transitions are important in both directions

Receiver indicates ready to
receive data by setting RDY

Sender sets data valid then
sets DAV

Receiver reads data then
clears RDY

Sender acknowledges by
clearing DAV

Page 2

We should be able to describe the sending and receiving agents as simple finite
state machines. Here is the FSM at the Sending end: (Full handshake)

library ieee;
use ieee.std_logic_1164.all;

entity fullsend is
generic (size: integer := 4);
port (rdy, clk : in std_logic;

datin : in std_logic_vector(size-1 downto 0);

dav : out std_logic;

datout : out std_logic_vector(size - 1 downto 0));

end fullsend;

Page 4

And here is the FSM for the receiving end:

library ieee;
use ieee.std_logic_1164.all;

entity fullrecv is
generic (size: integer := 4);
port (dav, rclk : in std_logic;

datin : in std_logic_vector(size-1 downto 0);

rdy : out std_logic;

datout : out std_logic_vector(size - 1 downto 0));

end fullrecv;

Page 5

architecture behavioral of fullrecv is
type StateType is (w_dav, datav, r_rdy, wt_ndav);
attribute enum_encoding of StateType: type is "00 01 11 10";
signal state : StateType;

begin
rdy <= '1' when (state = w_dav) or (state = datav) else '0';

handshake : process(rclk)
begin

if rising_edge(rclk) then
case state is

when w_dav =>
if dav = '1' then

state <= datav;
else

state <= w_dav;
end if;

when datav =>
datout <= datin;
state <= r_rdy;

when r_rdy =>
state <= wt_ndav;

when wt_ndav =>
if dav = '0' then

state <= w_dav;
else

state <= wt_ndav;
end if;

end case;
end if;

end process handshake;
end;

Page 7

architecture behavioral of fullsend is
type StateType is (wt, dat, d_av, r_dy);
attribute enum_encoding of StateType: type is "00 01 11 10";
signal state : StateType;

begin
dav <= '1' when (state = d_av) or (state = r_dy) else '0';

handshake : process(clk)
begin

if rising_edge(clk) then
case state is

when wt =>
if rdy = '1' then
state <= dat;
else

state <= wt;
end if;

when dat =>
datout <= datin;
state <= d_av;

when d_av =>
state <= r_dy;

when r_dy =>
if rdy = '0' then

state <= wt;
else

state <= r_dy;
end if;

end case;
end if;

end process handshake;
end;

Page 6

Here is an alternative way of writing an emulator for the '163 counter
This is a register which can hold 4 bits
Counts when P=T=1, holds when P*T=0
Loads data when /LD = 0
Clears data when /CL = 0
All of these are synchronous: occur only on clock edges (positive edges)
Daisy-chaining is possible: RCO connects to T of next most signifigant ctr
RCO is T * Q3 * Q2 * Q1 * Q0

Here is an entity statement for this part

-- '163 emulator
library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;

entity ctr is
generic (size: integer := 4);
port (n_clr, n_ld, p, t, clk : in std_logic;

data: in std_logic_vector(size-1 downto 0);
count: out std_logic_vector(size-1 downto 0);
rco : out std_logic);

end ctr;

Page 8

architecture behavioral of ctr is
signal cnt_int : std_logic_vector(size - 1 downto 0);
signal int_cnt : std_logic_vector(size - 1 downto 0); -- internal count
signal all_ones : std_logic_vector(size downto 0);

begin -- behavioral
all_ones <= (others => '1');
rco <= '1' when (t & cnt_int) = all_ones else '0';
count <= cnt_int;

logical:process(p, t, n_clr, n_ld, cnt_int, data)
begin
if n_clr = '0' then

elsif n_ld = '0' then
int_cnt <= data;

int_cnt <= cnt_int;
else

int_cnt <= cnt_int + 1;
end if;
end process logical;

state_transition:process(clk)
begin
if rising_edge(clk) then
cnt_int <= int_cnt;

end if;
end process state_transition;

end behavioral; Page 9

int_cnt <= (others => '0');

elsif p = '0' or t = '0' then

Note two processes here:

One has the combinatorics
associated with the logic in the part.

The other has the state transition
dynamics associated with the clock
edge.

count_2.C =

clk

count_1.D =

t * /count_1.Q * count_0.Q * n_clr * n_ld * p

+ count_1.Q * n_clr * n_ld * /p

+ count_1.Q * /count_0.Q * n_clr * n_ld

+ /t * count_1.Q * n_clr * n_ld

+ n_clr * /n_ld * data_1

count_1.C =

clk

count_0.D =

t * /count_0.Q * n_clr * n_ld * p

+ count_0.Q * n_clr * n_ld * /p

+ /t * count_0.Q * n_clr * n_ld

+ n_clr * /n_ld * data_0

count_0.C =

clk These are just about what you would have expected.
Note a lot of fluff has been optimized away.

Page 11

DESIGN EQUATIONS (11:32:34)

rco =

t * count_2.Q * count_1.Q * count_0.Q * count_3.Q

count_3.D =

t * count_2.Q * count_1.Q * count_0.Q * n_clr * n_ld * p *

/count_3.Q

+ n_clr * n_ld * /p * count_3.Q

+ /count_0.Q * n_clr * n_ld * count_3.Q

+ /count_1.Q * n_clr * n_ld * count_3.Q

+ /count_2.Q * n_clr * n_ld * count_3.Q

+ /t * n_clr * n_ld * count_3.Q

+ n_clr * /n_ld * data_3

count_3.C =

clk

count_2.D =

t * /count_2.Q * count_1.Q * count_0.Q * n_clr * n_ld * p

+ count_2.Q * n_clr * n_ld * /p

+ count_2.Q * /count_0.Q * n_clr * n_ld

+ count_2.Q * /count_1.Q * n_clr * n_ld

+ /t * count_2.Q * n_clr * n_ld

+ n_clr * /n_ld * data_2

RESOURCE ALLOCATION (11:32:34)

Information: Macrocell Utilization.

Description Used Max

Dedicated Inputs	8	8
Clock/Inputs	1	1
Enable/Inputs	0	1
Output Macrocells	5	8

14 / 18 = 77 %

Information: Output Logic Product Term Utilization.

Node# Output Signal Name Used Max
__
12	count_3	7	8
13	count_2	6	8
14	count_1	5	8
15	count_0	4	8
16	rco	1	8
17	Unused	0	8
18	Unused	0	8
19	Unused	0	8
__

23 / 64 = 35 %

Page 10

This was
implemented on
a 16V8

Here are some
numbers
relating to how
much of the
resources of
that part we
used.

Page 12

library ieee;

use ieee.std_logic_1164.all;

use work.std_arith.all; -- needed for integer + signal

entity test_tri is

port(clk, oe, cnt_enb : in std_logic;

counter : buffer std_logic_vector(3 downto 0);
data : inout std_logic_vector(3 downto 0));

end test_tri;

architecture foo of test_tri is

-- signal counter : std_logic_vector(3 downto 0);

begin

process (oe, counter)
begin
if (oe = '1') then data <= counter;
else

data <= "ZZZZ"; -- N.B. Z must be UPPERCASE!
end if;

end process;
process (clk)
begin
if rising_edge(clk) then
if (oe = '0') and (cnt_enb = '1') then

counter <= counter + 1;
end if;

end if;
end process;

end architecture foo;
Page 13

Now we are going to consider a strictly combinatoric circuit: an Arithmetic Logic
Unit (ALU)

It takes 2 numbers (quite narrow in this case: 2 bits each)
(Plut a carry-in bit)

And can add, subtract and shift left
This can be done in more than one way. Consider addition:

1. a_int <= '0' & a

b_int <= '0' & b

if c_in = 0, c <= a_int + b_int

if c_in = 1, c <= a_int + b_int + 1

2.. 	 a_int <= '0' & a & c_in

b_int <= '0' & b & c_in

c_int <= a_int + b_int

c <= c_int(width downto 1)

These have differences in the
way they are implemented,
and when we get to actual
implementation of the full
alu we will find yet another
one

library ieee;

use ieee.std_logic_1164.all;

use work.std_arith.all; -- needed for integer + signal

entity alu is

port(cin : in std_logic;

a, b : in std_logic_vector(1 downto 0);

alu_ctl : in std_logic_vector(1 downto 0);

c : out std_logic_vector(2 downto 0));

end alu;
Page 15

Simulation of Tri-State as an Output

Note that data(3 downto 0) are white (meaning an input) when oe is low.

Page 14

Here is one architecture for the adder

architecture justright of alu is
signal a_int, b_int : std_logic_vector(2 downto 0);
constant add : std_logic_vector(1 downto 0) := "00";
constant sub : std_logic_vector(1 downto 0) := "01";
constant shift: std_logic_vector(1 downto 0) := "10";

begin
a_int <= '0' & a;
b_int <= '0' & b;

small_alu: process(a_int, b_int, cin, alu_ctl)
begin
case alu_ctl is
when add => if cin = '0'

then c <= a_int + b_int;
else c <= a_int + b_int + 1;

end if;
when sub => c <= a_int - b_int;
when shift => if cin = '0'

then c <= a_int + a_int;
else c <= a_int + a_int + 1;

end if;
when others => c <= (others => '-');

end case;
end process small_alu;

end architecture justright;

Note the carry bit is

used to determine

which expression to

evaluate: in logic it is a

kind of multiplexor.

The 'opcode' is another

multiplexor: in this

case a 3:1

These have overhead.

Page 16

Here is the second architecture: does the same thing...

architecture justright of alu is
signal a_int, b_int, c_int : std_logic_vector(3 downto 0);
constant add : std_logic_vector(1 downto 0) := "00";
constant sub : std_logic_vector(1 downto 0) := "01";
constant shift: std_logic_vector(1 downto 0) := "10";

begin
a_int <= '0' & a & cin;
b_int <= '0' & b & cin;

small_alu: process(a_int, b_int, cin, alu_ctl)
begin
case alu_ctl is
when add => c_int <= a_int + b_int;
when sub => c_int <= a_int - b_int;
when shift =>c_int <= a_int + a_int;
when others => c_int <= (others => '-');

end case;
end process small_alu;
c <= c_int(3 downto 1);

end architecture justright;

This may or may not
have more overhead.
Note that by adding Cin
to both inputs (the first
place after the binary
point is of value)
save at least some
notational overhead. It
cancels on subtract. But
we have to discard the
rightmost bit at the end

we

Page 17

Here is a schematic of the way the
first of these schemes is
implemented. The final selection
is a 9:3 MUX, while there are two
6:3 MUXes ahead of it. And ahead
of that are some simple
combinatoric circuits to generate
the sums.

Page 19

architecture justright of alu is
signal a_int, b_int, c_int : std_logic_vector(3 downto 0);
signal a_1, n_b, upper, lower : std_logic_vector(3 downto 0);
constant add : std_logic_vector(1 downto 0) := "00";
constant sub : std_logic_vector(1 downto 0) := "01";
constant shift: std_logic_vector(1 downto 0) := "10";

begin
a_int <= '0' & a & cin;
b_int <= '0' & b & cin;
a_1 <= '0' & a & '1';
n_b <= '1' & (not b) & '1';

upper: process(a_int, a_1, alu_ctl)
begin

case alu_ctl is
when add => upper <= a_int;
when sub => upper <= a_1;
when shift => upper <= a_int;
when others => upper <= (others => '-');

end case;
end process upper;

lower: process(a_int, b_int, n_b, alu_ctl)
begin

case alu_ctl is
when add => lower <= b_int;
when sub => lower <= n_b;
when shift => lower <= a_int;
when others => lower <= (others => '-');

end case;
end process lower;
c_int <= upper + lower;
c <= c_int(3 downto 1);

end architecture justright;

Here our final operation is just an
addition, so we do more work in
the earlier stages, such as doing
the two's complement for the
negative of b. We use the same
trick for concatenating the carry
in bit to both halves of the
addition.

Page 18

Here is the second of the two schemes

There still is a MUX: this time of 12:4, but it
still has only two 'steering' bits.

We discard a bit in the final result

And we also have to construct the signals that
come to this MUX from the left.

Page 20

Page 21

This is the second of the three schemes

Information: Macrocell Utilization.

Description Used Max

Dedicated Inputs	1	1
Clock/Inputs	4	4
I/O Macrocells	6	64
Buried Macrocells	2	64
PIM Input Connects	12	312

25 / 445 = 5 %

Required Max (Available)

CLOCK/LATCH ENABLE signals 0 4

Input REG/LATCH signals 0 69

Input PIN signals 5 5

Input PINs using I/O cells 2 2

Output PIN signals 4 62

Total PIN signals 11 69

Macrocells Used 6 128

Unique Product Terms 28 640

Page 23

This is the third option: here we
have two 12:4 MUXes and only a
simple addition to reconstruct
things.

Some logic is required to put
together the signals at the left.

We discard a bit at the output

Here is the first of the three schemes
Information: Macrocell Utilization.

Description Used Max

Dedicated Inputs	1	1
Clock/Inputs	4	4
I/O Macrocells	7	64
Buried Macrocells	3	64
PIM Input Connects	12	312

27 / 445 = 6 %

Required Max (Available)

CLOCK/LATCH ENABLE signals 0 4

Input REG/LATCH signals 0 69

Input PIN signals 5 5

Input PINs using I/O cells 2 2

Output PIN signals 5 62

Total PIN signals 12 69

Macrocells Used 8 128

Unique Product Terms 43 640

Page 22

This is the third of the three schemes

Information: Macrocell Utilization.

Description Used Max

Dedicated Inputs	1	1
Clock/Inputs	4	4
I/O Macrocells	5	64
Buried Macrocells	1	64
PIM Input Connects	8	312

19 / 445 = 4 %

Required Max (Available)

CLOCK/LATCH ENABLE signals 0 4

Input REG/LATCH signals 0 69

Input PIN signals 5 5

Input PINs using I/O cells 2 2

Output PIN signals 3 62

Total PIN signals 10 69

Macrocells Used 4 128

Unique Product Terms 28 640

Page 24

	Untitled

