
6.111 Lecture # 12

Binary arithmetic: most operations are familiar

Each place in a binary number has value 2n

5 = 00000101 = 1 + 4

19 = 00010011 = 1+2+16

5 + 00000101

19 00010011

= 00011000 24 = 16+8

19 - 00010011

5 = 00000101

00001110 14 = 8+4+2

What happens if we do this operation:

5 00000101

-19 00010011

= 11110010

Note two things about this operation:

Addition often

requires a ‘carry’

Subtraction may

require a ‘borrow’

1. We had to invent a ‘borrow’ bit from the left

2. What is left is the two’s complement representation of -14:

14 = 00001110

-14 = 11110001

+1

= 11110010

Representation of negative numbers: there are a number of ways we

might do this:

1. Use of a ‘sign bit’ (this is just like having a sign for the

number)

-5 = 10000101

Note that addition and subtraction are somewhat complex

(and multiplication and division). Generally must strip the

sign bit, do the operation, then figure out the sign of the

result.

2. ‘One’s Complement’: invert each bit. We won’t have much to

say about this.

3. ‘Two’s Complement’: invert each bit and add one.

1

Two’s complement is consistent and reversible:

5 = 00000101

-5 = 11111010 +1 = 11111011

5 = 00000100 +1 = 00000101

Addition and Subtraction between two’s complement numbers works:

-5 11111011

+(-19) 11101101

= 11101000 (which is -24)

00010111+1 = 00011000 = 16+8

3 4

2

5.5 = 00000101.1

5.0 = 00000101.0

-5.0 = 11111010.1

+ 1

= 11111101.0

In many cases we want to

extend a number: to employ

more ‘binary places’ to

represent a number. How do

we do this extension?

To extend a number (represent with more places) without changing

value:

If the number is: Extend to left Extend to right

Positive zeros zeros

Negative ones zeros

19 = 00010011

X -5 = 11111011

= 00010011

+ 00010011

= 00111001

+ 00010011

= 00011010001

+ 00010011

= 001000000001

+ 00010011

= 0010001100001

+ 00010011

= 00100100100001

+ 00010011

= 001001010100001

10100001 is the
negative of:

01011110+1

= 01011111

= 64+16+8+4+2+1=95

5

Now consider how we might do a simple multiplication

This involves shifting the top

number repeatedly to the left
= 00001001

and adding it to the partial

X 13 = 00001101 sum. This works well and

requires a shift register as
= 00001001

wide as the product as well as

+ 00001001 an accumulator for the partial

= 0000101101 and final product

+ 	 00001001

= 00001110101 (117)

Here is a hardware description of a multiplier

If B[0] is 1, load (add # to

accumulator),

Shift Multiplicand left,

Shift Multiplier right,

Repeat until done

7 8

6

 9

 9 = 00001001 An alternative is to shift the

partial product to the right
X 13 	= 00001101

= 0000001001

+ 	 00001001

= 00000101101

+ 00001001

= 00001110101 (same number shifted)

Here is how it would work for negative numbers. We must extend the

sign (put one’s in as we add places to the number

-9 = 11110111

X 13 = 00001101

= 1111110111 (remember sign extension)

+ 11110111

= 11111010011

+ 11110111

= 111110001011 (-117)

(-) 000001110101

9

‘sign extension’ consists of shifting ones into the MSB if it is a

negative number.

-9 = 11110111

X 13 = 00001101

= 1111110111 (remember sign extension)

+ 11110111

= 11111010011

+ 11110111

= 111110001011 (-117)

(-) 000001110101 = 1+4+16+32+64=117

Multiplication of Two’s Complement number by sign/magnitude number:

This is one case that works fairly well

1. Use the sign/magnitude number as the multiplier

2. If MSB is 1 (negative number), do the two’s complement thing

on the multiplicand

11 12

10

The XOR

complements each bit

of the multiplicand if

S=1 and the Carry in

adds S (1 if S is set). If

the multiplier is

positive, the

multiplicand is not

complemented and

zero is carried in.

13

More Multiplication Choices

Add X input Y times
Load Y into downcounter
Add X each time while counting down
Stop when counter gets to zero
Real estate cheap
Time uncertain (could be very long)
And what about negative numbers?

Shift and Add
This is the technique we have been using
Technique you learned in elementary school
Takes as many cycles as there are bits
Uses a single register for multiplier and accumulator
If care is taken with sign extension, can handle negative

numbers consistently with others.

Many problems require multiplication. In fairness to what we have just said, there are

Choices:

Table Lookup
Each input is N bits wide
ROM must store 2^N answers
Fast but uses a lot of Silicon

Log converter
Convert to logs
Add
Antilog Converter
Fast, maybe uses less Silicon
Precision uncertain
What to do about negative numbers?

It is Time for an example: so here is a physical system to control:

Control for a trolley car (Light Rail Vehicle)
Control FORCE applied to wheels
Speed command by driver (the 'Go lever')
Accommodates car weight: The difference between commanded

speed and actual car speed should be acceleration

F = MA (required force is acceleration times car mass

We will also use PI control:
Integral part drives error to zero
Proportional part gives stability

15 16

14

Uses feedback control

By measuring actual speed and feeding that back to the PI
controller, we can drive speed error (exponentially) to zero.

So in this example we will examine how to build the
controller. We assume a highly ideal drive, in which drive
force is directly proportional to commanded motor current.

17

thing.

Speed error is difference between
measured and commanded

added discrete signals here

Ha: multiply will be interesting

Here is a flow chart for our system:

Timing establishes a fixed interval
over which our control system does its

PI is just addition of the proportional
and integrated signal. Integrated is

As with any other design, we start with a high level block diagram: here are the
inputs and outputs.

Speed sensor and 'Go lever' are actual and required speed: through A/D
Weight is measured by a load cell or air support system pressure
Output is current command to motor/drive (which we assume works well)

Here is a possible Data Path for our PI Controller

Integral approximated by a sum

19 20

18

PI Controller Data Path (B)
When done with the PI, we must multiply by weight.
This fragment of data path handles that multiply as part of a shift and add

routine.

We could control this with one large FSM, but it seems reasonable to

break the control down to several smaller (more easily developed and

tested) FSM’s, which must then be coordinated

Note there is also a synchronizer here

Here is where the math gets done

ALU Controls:

00 F = Invert A

01 F = A + 1

10 F = A + B

11 F = A - B

SR Controls

00 Hold

01 SHIFT R

10 CLEAR

11 LOAD

SMUX

0 Rotate

1 Sign Extend Note: we don’t use all of these!
21

Here is my first

guess at the

‘Main’ FSM that

coordinates all. It

starts other

processes and

waits for them to

finish before

going on. Note

the TIC is

produced by an

FSM (a counter)

that is NOT

controlled by the

main FSM.

23 24

22

