
6.111 Lecture # 12 

Binary arithmetic: most operations are familiar 

Each place in a binary number has value 2n 

5 = 00000101 = 1 + 4 

19 = 00010011 = 1+2+16 

5 + 00000101 

19  00010011 

= 00011000 24 = 16+8 

19 - 00010011 

5 = 00000101 

00001110 14 = 8+4+2 

What happens if we do this operation: 

5  00000101 

-19 00010011 

= 11110010 

Note two things about this operation: 

Addition often 

requires a ‘carry’ 

Subtraction may

require a ‘borrow’ 

1. We had to invent a ‘borrow’ bit from the left 

2. What is left is the two’s complement representation of -14: 

14 = 00001110 

-14 = 11110001 

+1 

= 11110010 

Representation of negative numbers: there are a number of ways we

might do this: 

1. Use of a ‘sign bit’ (this is just like having a sign for the

number) 

-5 = 10000101 

Note that addition and subtraction are somewhat complex

(and multiplication and division). Generally must strip the

sign bit, do the operation, then figure out the sign of the

result. 

2. ‘One’s Complement’: invert each bit. We won’t have much to 

say about this. 

3. ‘Two’s Complement’: invert each bit and add one. 
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Two’s complement is consistent and reversible: 

5 = 00000101


-5 = 11111010 +1 = 11111011


5 =  00000100 +1 = 00000101


Addition and Subtraction between two’s complement numbers works: 

-5 11111011


+(-19) 11101101


= 11101000 (which is -24)


00010111+1 = 00011000 = 16+8 
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5.5 = 00000101.1 

5.0 = 00000101.0 

-5.0 = 11111010.1 

+ 1 

= 11111101.0 

In many cases we want to

extend a number: to employ 

more ‘binary places’ to 

represent a number. How do

we do this extension? 

To extend a number (represent with more places) without changing

value: 

If the number is: Extend to left Extend to right 

Positive zeros zeros 

Negative ones zeros 

19 = 00010011 

X -5 = 11111011 

= 00010011 

+ 00010011 

= 00111001 

+ 00010011 

= 00011010001 

+ 00010011 

= 001000000001 

+ 00010011 

= 0010001100001 

+ 00010011 

= 00100100100001 

+ 00010011 

= 001001010100001 

10100001 is the 
negative of: 

01011110+1 

= 01011111 

= 64+16+8+4+2+1=95 
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Now consider how we might do a simple multiplication 

This involves shifting the top

number repeatedly to the left
= 00001001 

and adding it to the partial 

X 13 = 00001101 sum. This works well and 

requires a shift register as
= 00001001 

wide as the product as well as 

+ 00001001 an accumulator for the partial 

= 0000101101 and final product 

+ 	 00001001 

= 00001110101 (117) 

Here is a hardware description of a multiplier 

If B[0] is 1, load (add # to

accumulator), 

Shift Multiplicand left, 

Shift Multiplier right, 

Repeat until done 
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 9 = 00001001 An alternative is to shift the 

partial product to the right
X 13 	= 00001101 

= 0000001001 

+ 	 00001001


= 00000101101


+ 00001001


= 00001110101 (same number shifted)


Here is how it would work for negative numbers. We must extend the 

sign (put one’s in as we add places to the number 

-9 = 11110111 

X 13 = 00001101 

= 1111110111 (remember sign extension) 

+ 11110111 

= 11111010011 

+ 11110111 

= 111110001011 (-117) 

(-) 000001110101 
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‘sign extension’ consists of shifting ones into the MSB if it is a

negative number. 

-9 = 11110111 

X 13 = 00001101 

= 1111110111 (remember sign extension) 

+ 11110111 

= 11111010011 

+ 11110111 

= 111110001011 (-117) 

(-) 000001110101 = 1+4+16+32+64=117 

Multiplication of Two’s Complement number by sign/magnitude number: 

This is one case that works fairly well 

1. Use the sign/magnitude number as the multiplier 

2. If MSB is 1 (negative number), do the two’s complement thing

on the multiplicand 
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The XOR 

complements each bit

of the multiplicand if

S=1 and the Carry in

adds S (1 if S is set). If

the multiplier is

positive, the

multiplicand is not

complemented and

zero is carried in. 
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More Multiplication Choices 

Add X input Y times 
Load Y into downcounter 
Add X each time while counting down 
Stop when counter gets to zero 
Real estate cheap 
Time uncertain (could be very long) 
And what about negative numbers? 

Shift and Add 
This is the technique we have been using 
Technique you learned in elementary school 
Takes as many cycles as there are bits 
Uses a single register for multiplier and accumulator 
If care is taken with sign extension, can handle negative 

numbers consistently with others. 

Many problems require multiplication. In fairness to what we have just said, there are 

Choices: 

Table Lookup 
Each input is N bits wide 
ROM must store 2^N answers 
Fast but uses a lot of Silicon 

Log converter 
Convert to logs 
Add 
Antilog Converter 
Fast, maybe uses less Silicon 
Precision uncertain 
What to do about negative numbers? 

It is Time for an example: so here is a physical system to control: 

Control for a trolley car (Light Rail Vehicle) 
Control FORCE applied to wheels 
Speed command by driver (the 'Go lever') 
Accommodates car weight: The difference between commanded 

speed and actual car speed should be acceleration 

F = MA (required force is acceleration times car mass 

We will also use PI control: 
Integral part drives error to zero 
Proportional part gives stability 
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Uses feedback control 

By measuring actual speed and feeding that back to the PI 
controller, we can drive speed error (exponentially) to zero. 

So in this example we will examine how to build the 
controller. We assume a highly ideal drive, in which drive 
force is directly proportional to commanded motor current. 
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thing. 

Speed error is difference between 
measured and commanded 

added discrete signals here 

Ha: multiply will be interesting 

Here is a flow chart for our system: 

Timing establishes a fixed interval 
over which our control system does its 

PI is just addition of the proportional 
and integrated signal. Integrated is 

As with any other design, we start with a high level block diagram: here are the 
inputs and outputs. 

Speed sensor and 'Go lever' are actual and required speed: through A/D 
Weight is measured by a load cell or air support system pressure 
Output is current command to motor/drive (which we assume works well) 

Here is a possible Data Path for our PI Controller 

Integral approximated by a sum 
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PI Controller Data Path (B) 
When done with the PI, we must multiply by weight. 
This fragment of data path handles that multiply as part of a shift and add 

routine. 

We could control this with one large FSM, but it seems reasonable to

break the control down to several smaller (more easily developed and

tested) FSM’s, which must then be coordinated 

Note there is also a synchronizer here 

Here is where the math gets done 

ALU Controls: 

00 F = Invert A 

01 F = A + 1 

10 F = A + B 

11 F = A - B 

SR Controls 

00 Hold 

01 SHIFT R 

10 CLEAR 

11 LOAD 

SMUX 

0 Rotate 

1 Sign Extend Note: we don’t use all of these!
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Here is my first

guess at the

‘Main’ FSM that 

coordinates all. It 

starts other 

processes and 

waits for them to 

finish before 

going on. Note

the TIC is 

produced by an

FSM (a counter)

that is NOT 

controlled by the

main FSM. 
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