
6.111 Lecture # 13 

FSM Hierarchy: 

We want to build a control system using multiple FSM’s 

Minor FSM’s are controlled (supervised) by a Major FSM 

All FSM’s use the 

same clock 

Minor FSM’s may

be decomposed

into multiple

FSM’s themselves 

All FSM’s (major

and minor)

initialized by the

same init signal 

Major FSM invokes minor FSM’s using a protocol that is much like a

handshake: 

Wait until minor FSM is not busy 

Invoke minor FSM 

Wait while minor FSM does its thing and is not busy again 

Go on to the next thing… 

1 

It looks this way from the minor fsm 

On init this fsm is not busy 

It becomes busy when it is started 

It becomes not busy when it finishes 

and goes back to the init state 

Suppose we want to do two

computations in parallel

and then a third that 

depends on the two. 

And suppose this is part of

a repetitive task, set off by

a timer tick. 

3 4 

2 



Here is the data path from last time
It might look like this: something is wrong if A,B and C are not

ready at the timer tic 

5 

We could control this with one large FSM, but it seems reasonable to Here is a summary of signals


break the control down to several smaller (more easily developed and


tested) FSM’s, which must then be coordinated


that go from control to data

paths 

7 8 

6 



The Main FSM (in this rendition) 

a: Controls the process and minor FSMs 

b. Multiplexes signals the multiple minor FSMs use 

Note that both 

minor FSMs 

control (at

different times)

elements of the 

data path. 

This is the Major FSM loop for the example of last time 

We do not have an 

error check here. 

A: probably do not

want the trolley to

hang up 

B: We are fairly sure

we have time for the 

computations 

9 

Here is the minor FSM that controls the PI part of computation 
This is the minor fsm that 

controls the multiplication

process. It controls

another fsm which is a 

count zero to seven. No 

handshake is required for

that counter because it is 

known to take only one

clock cycle. The test

variable CT is set when the 

counter reaches 7. The last 

bit is to rotate the answer 

back into place. 

11 12 

10 



15 16 

13 14 


