
6.111 Lecture # 4

Ss
Counting is a very important function in the digital world, and it is done
in a variety of ways

Here is a 'ripple' counter using negative edge triggered T flip flops

Count Sequence:

The LSB is on the left in this diagram. It always
toggles.

The transition of 1 -> 0 of each 'bit' triggers a
toggle of the next most significant bit

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0

Here is why it is called a 'ripple' counter:

The effect of each input transition must affect all bits, and it does this
by rippling through from LSB to MSB

An odd effect is that the transient count is always less than the true
count.

Can COUNT fast, but maybe can't be READ fast!

'Synchronous' counters use more logic to reduce the time to stable outputs.

Here is a simplified version of the 4 bit 74LS163 counter

Note that, while all bits of the synchrous counter are set very close to the
same time, they may not be set at exactly the same time.

This means that there is a rapidly changing transient state of the counter.

If it passes through all one's it will cause a 'glitch' on the ripple carry out.

You are asked to look for this in Lab 1, but you may not see it!

The '163 will 'count' ONLY if P and T are both high

Note that RCO is the AND of all four bits and T.

So if this is input to the T input of the next higher nibble, it
indicates that all bits below are set, so the next higher nibble
should count.

P is 'count enable', and P and T should be tied together ONLY
for the least significant 4 bits of a counter.

With a little ingenuity, you can achieve all kinds of count sequences. These
are both divide by twelve circuits.

Finite State machines

We have already seen simple FSM's in Flip Flops and Counters

But you can do much more complex things with them

After a clock edge, the 'machine' assumes a state that depends on
where it was before the edge and its inputs just before the edge

If the input is wired to the
output logic, the output can
change asynchronously in
response to changes in the
input.

On the other hand, if the
input is used ONLY in the
next-state logic, the output
is fixed during each clock
cycle and only changes
after the clock edge.

We have automated procedures to build the logic foe finite state machines, but
here is an example of a very simple machine.

This is one way of describing an
FSM, in terms of transitions on
each clock edge.

4 possible states require 2 bits of
state. This is a mealey machine

It is straightforward to build a truth table for 'next state' based on 'present
state' and input. The output is also derived from the same variables.

Here is the logic that would be required to implement that FSM, if it were made out of
discrete gates.

Programmable Logic: Here are two old PALs
Note I, O and I/O pins
Power and Ground are consistently upper right and lower left
Clock is pin 1 and /OE is lower right, if those are required
These are historic parts: fast, cheap and you probably won't ever see one

Here is a schematic
diagram for the 16L8: we
can learn more about this
by considering its parts.

It more complex parts it is
not usual to see the whole
wiring diagram as you do
here.

Programmable Array Logic (PAL)
The basic element is the 'product term': essentially a wired AND of input signals
and their complements

You can make things like a*b*/c

All of these devices synthesize a large OR of ANDs

Or the output can be registered, as in the 16R4

Note that in this case the 'feedback' is
from the register, not the pin.
Pin 1 is now dedicated to being the
clock input and is not available as a
regular input.
Pin 13 (or the lower right hand pin) is
output enable and is not available as a
regular input

Programmable Logic Devices have become more complex
Here is the block diagram level diagram of the 22v10
The Programmable Array is familiar
Note the ORs employ different numbers of product terms
And here the output architecture is also programmable

This is the output logic macrocell for the 22V10
Output enable is derived froma single product term
Output Select has 4 choices:

Direct or inverted
Registered direct or inverted

'Feedback' input is either from the register or from the pin

The clock is still from Pin 1

The select bits are programmed

CPLD's are just more complicated PLD's
Here is a diagram for the Cypress '374i part

Here is a program logic block
Note there are both I/O and 'buried' macrocells

Input/Output Macrocell (programmable architecture)
Not a lot different from the PAL
Note there are four available clock lines: chosen by a MUX

Lab Kits have four '374i parts
Note that interconnections limit flexibility of signal allocation

