
6.111 Lecture # 5

VHDL: Very High speed integrated circuit Description Language:

All VHDL files have two sections: architecture and entity

-- Massachusetts (Obsolete) Stoplight Example

library ieee;
use ieee.std_logic_1164.all;
entity check is

port(r, y, g: in std_logic;
ok: out std_logic);

end check;

architecture logical of check is
signal t1, t2, t3: std_logic;

begin
t1 <= r and (not g);
t2 <= y and (not g);
t3 <= (not r) and (not y) and g;
ok <= t1 or t2 or t3;

Entity section
describes input and
output

Architecture section
describes what to do
with those signals

end logical;

library clause describes the basic library to make reference to

use	 clause establishes definitions of many important items
for most situations, use these 'as is'

library ieee;

use ieee.std_logic_1164.all;

Other libraries will be used and you will have the opportunity to make libraries
of your own.

The entity declaration can be quite complex and has a lot of information
I/O signals are referrred to as PORTs. These signals have Mode and Type

The Mode of a signal can be in, out, buffer or inout
in and out are straightforward
buffer is like out, but is available within the architecture
inout is a tri-state (bidirectional)

Note how vectors (multi-bit) signals are handled.

We can avoid using Mode BUFFER

������� �����
��� ������������������������
������ ��� ��

���� ����� ���� �� ����������
����� ����� ��� �����������

��� ����

������������ �������������� �� ��� ��
������ ������� ����������

�����
������ �� ��� ��� ����
���� �� �������
���� �� ������ �� ���� �����
�� ������ ������ ���� �� ���� �� ���� �����

��� ���������������

Note the additional
declaration of signal inside
the architecture section.
Note the names in the
architecture section need
not be unique and are there
for readability

Type of signals are defined in

LIBRARY ieee;

use ieee.std_logic_1164.all;

(VHDL is defined by IEEE Standard 1164)

std_logic types can take values:
U Uninitialized
X Unknown
0 Zero
1 One
Z Tristate (Must be upper case!)
W Weak unknown
L Weak Zero
H Weak One
- Don't care

Note that in most cases we don't really need to use all of these values

Extract of the report file (*.rpt)

DESIGN EQUATIONS (12:32:59)

t1 =

r * /g

t2 =

y * /g

t3 =

/r * /y * g

ok =

/r * /y * g

+ r * /g

+ y * /g

 More from the report file: If YOU don't set pin numbers, the compiler will.

C22V10

__

g =| 1|

y =| 2|

r =| 3|

not used *| 4|

not used *| 5|

not used *| 6|

not used *| 7|

not used *| 8|

not used *| 9|

not used *|10|

not used *|11|

not used *|12|

|24|* not used

|23|= t3

|22|= t1

|21|* not used

|20|* not used

|19|* not used

|18|* not used

|17|* not used

|16|* not used

|15|= t2

|14|= ok

|13|* not used

__

Easy Way to Assign Pins:

Don't assign pins first.

Let galaxy pick them and wire to those pins.

Find out the pins from the report file

To put them in to avoid rewiring.

click on Files->Annotate

After a pop up, this produces and xxx.ctl file which then is used along with
xxx.vhd.

OR you can use the pin_numbers attribute (next slide)

Be careful not to put a pin number in here which conflicts with a pin_avoid
attribute in your xxx.vhd file.

Attributes provide information about VHDL constructs such as

Entities

Architectures

Types

Signals

Pin_numbers maps extrernal signals to specific pins

Pin_avoid means to not use specific pins.

See the xxx.vhd files in /mit/6.111/cpld/sources/ for guidance in choosing
pins and/or avoiding pins.

Example Using Pin_avoid Attribute:

library ieee;

use ieee.std_logic_1164.all;

entity fulladd is

port (ina, inb, inc : in std_logic;

sumout, outc : out std_logic);

ATTRIBUTE pin_avoid of fulladd :ENTITY is

" 19 " &

" 12 " ;

end fulladd;

Here is the contents of a control (.ctl) file:

Attribute PIN_NUMBERS of Reserved2 is "19" ;

Attribute PIN_NUMBERS of outc is "14" ;

Attribute PIN_NUMBERS of sumout is "13" ;

Attribute PIN_NUMBERS of Reserved1 is "12" ;

Attribute PIN_NUMBERS of ina is "3" ;

Attribute PIN_NUMBERS of inb is "2" ;

Attribute PIN_NUMBERS of inc is "1" ;

So here is one example of a VHDL implementation

The issue is an adder: we can make a 'full adder' from two 'half adders' and a
little

bit of logic. Here, to start is the half adder:

So here is the 'half adder' implemented in VHDL:

library ieee;

use ieee.std_logic_1164.all;

-- here is the entity

entity halfadd is

port (a, b : in std_logic;

sum, c : out std_logic);

end halfadd;

architecture comp of halfadd is

begin

-- a concurrent statement implementing the and gate

c <= a and b;

-- a concurrent statement implementing the xor gate

sum <= a xor b;

end comp;

These statements are 'concurrent', which means they are executed at the same time and
with no precedence.

Now how would you make a 'full' adder?

cin x y bout cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

So a cascade of 2 half adders
and an or gate does it

Here is an implementation of the full adder using component instantiation
through a port map:

library ieee;

use ieee.std_logic_1164.all;

entity fulladd is

port (ina, inb, inc : in std_logic;

sumout, outc : out std_logic);

end fulladd;

architecture top of fulladd is

component halfadd

port (a, b : in std_logic;

sum, c : out std_logic);

end component;

signal s1, s2, s3 : std_logic;

begin

-- a structural instantiation of two half adders

h1: halfadd port map(a => ina, b => inb,

sum => s1, c => s3);

h2: halfadd port map(a => s1, b => inc,

sum => sumout, c => s2);

outc <= s2 or s3;

end top;

So here is how a compilation and simulation of this simple problem might go.

setup 6.111

Galaxy &

Now use the pulldown files -> add

At this point you add files: click on file in left window and then the arrow
that shows up in the middle. Add all the files to be compiled. Then OK

Here is what the project screen looks like now, with the files added.

Next Step is to select a Device and select top file and Set Top

We pick the
device: here a
22v10 will hold
the required
logic. We also
select a package
(not really
important if we
are only
simulating) and
we also pick a
simulation
scheme.

Here it is ready to compile: device and top design file are selected.

We will use’ Smart’ Compile: the program figures out what to do

This is what the compile screen looks like. If therre are errors they will show up
here. Note we have an error here at the very last step, which is setting up for
NOVA. Not to worry: this was just a disagreemnt over displays. Note a lot of stuff
scrolls by: see the scroll bar on the right.

Here is he opening screen for Nova, a simple simulator. Invoke from ‘tools’
on the project screen or from the command line. Use file->open

We must select a .jed (JEDEC) file for
the simulation. In this case the correct
file gets its name from the top design file
and is fullad.jed

Here is the simulation. Use Edit to set up the inputs: here we just set each input to
be driven as a ‘clock’ with different (X2) periods to cycle through all possible
inputs. Then Simulate generates the output.

