
Case-When

If-Then-Elsif-Else

Signal assignment


Sequential (must be inside a process)


Process (used as wrapper for sequential statements)

With-Select-When

When-Else

Instantiation

Signal assignment


Concurrent


VHDL Statements


6.111 Lecture # 6 




inb WHEN OTHERS;

inb WHEN '1',


outc <= ina WHEN '0',

WITH inc SELECT


Select conditions must be mutually exclusive and exhaustive

With-Select-When (Note: always use OTHERS as there are values other than '0' and '1')


Or:

h1: halfadd PORT MAP (ina, inb, sum, c); 


sum => s1, c => s3); 

h1: halfadd PORT MAP (a => ina, b => inb,


Instantiation:


outc <= ina AND (inb OR inc);


Signal assignment:


Concurrent Statements


-- positional 
 association


-- named association




Signals must be a declared outside of the process

'Variables' may be declared within a process (more later)


Signal assignments can be both sequential and concurrent

interpreting this statement)


Statements within a process are ‘executed’ sequentially (but use care in

Sequential statements model combinational or synchronous logic (or both)


A process is a wrapper for sequential statements


Multiple processes are possible in an architecture


A process is concurrent with other concurrent statements


Process Statement




clocks)

Sensitivity list is not synthesized in actual logic (except for the use of


changes

When simulated, the process is executed when something in that list


Sensitivity list is there for simulation:


-- sequential statements
END PROCESS; 

PROCESS (sensitivity list)
BEGIN 

Process label and variable declarations are optional:


-- sequential statements
END PROCESS label; 

BEGIN


PROCESS (sensitivity list)
VARIABLE -- declarations 

label:


Process Syntax:




are curious (various LOOP statements, etc.)

There are other sequential statements which we won't use. See the book if you


END CASE;


CASE inc IS

Case-When:


END IF;


If-then-elsif-else


outc <= ina AND (inb or inc);


Signal Assignment


Sequential Statements


ELSIF 

IF


WHEN OTHERS

WHEN '1' 

WHEN '0' 


inc = '1' THEN outc <= inb;

inc = '0' THEN outc <= ina;


ELSE outc <= inc;


=> outc <= ind;

=> outc <= inb;

=> outc <= ina;




&


Concatenation -- defined for strings and signal values


Arithmetic:


Relational (use ieee.std_logic_1164.all)


AND, OR, NAND, NOR, XOR, XNOR, NOT


Logical (use ieee.std_logic_1164.all)


Basic Operators


+, -


=, /=, <, >, <=, >=


-

(* too, but it can't be synthesized)

is defined for unary arithmetic too


(note that <= and => have other meanings too)




Synthesis ignores this sensitivity list


(NOT when each sequential statement is executed)

All signals in the process are updated when the process finishes

(we use the sensitivity list for this purpose)


Processes: you must list conditions that initiate evaluation of the process


statement, that statement is evaluated

If evaluation of a concurrent statement changes the input to a concurrent

Concurrent statements are evaluated whenever any input changes


Simulation is used to produce outputs from specified input signals


(processes as well as other concurrent statements)

Synthesis is to produce hardware that does what the statements specify


Simulation vs. Synthesis




What will synthesis do with this? 

library ieee; 
use ieee.std_logic_1164.all; Will this generate one or two flipentity reg is flops? 
port (
a, clk : in std_logic; 
c : out std_logic); 

end reg;

architecture top of reg is

signal b : std_logic;

begin -- top


reg2: process (clk)

begin -- process

if rising_edge(clk) then

b <= a;

c <= b;


end if;

end process;


end top;




 clk 
b.C = 

a 
b.D = 

clk 
c.C = 

b.Q 
c.D = 

DESIGN EQUATIONS 


Well, here is what it did, from the .rpt file:


(16:16:54)




-- this produces q = /g * q + d * g (mind your g's and q's!) 

end process;
end top; 

begin
process(d, g)
begin

IF g = '1' then q <= d; 

architecture top of reg is 

end reg; 

entity reg is 

library ieee; 
use ieee.std_logic_1164.all; 

Implicit Memory - Latch example


port (d, g: in std_logic; 

end IF; 

q 

-- notice there is no ELSE 

: out std_logic); 



end top; 

begin
q <= s1;
s1 <= d when g = '1' else s1; 

architecture top of reg is
signal s1: std_logic; 

end reg; 

entity reg is 

library ieee; 
use ieee.std_logic_1164.all; 

Explicit Memory: Latch (same function, different architecture)


port (d, g: in std_logic; 
q  : out std_logic); 



end process;
end top; 

begin
process (s1, d, g)

begin
if g = '1' then s1 <= d; 

architecture top of reg is
signal s1: std_logic; 

end reg; 

entity reg is 

library ieee; 
use ieee.std_logic_1164.all; 

(note this is more verbose than the prior)

Explicit Memory: Latch (same function, yet another architecture)


port (d, g: in std_logic; 
q 

end if; 
else s1 <= s1; 

: out std_logic); 



--
-- this produces q.D = t*/q.Q + /t*q.Q 

end process;
end top; 

begin
q <= s1; 

architecture top of clked_t is 
signal s1: std_logic; 

end clked_t; 

entity clked_t is 

library ieee; 
use ieee.std_logic_1164.all; 

Clocked Register (implicit memory): This is a T-ff


end if; 

if rising_edge(clk) then
begin
process (clk, s1) 

port (t, clk : in std_logic; 

end if; 

if t = '1' 

q 

and q.C = clk 

then s1 <= NOT s1; 

: out std_logic); 



--
-- this produces q.D = t*/q.Q + /t*q.Q 

end process;
end top; 

begin
q <= s1; 

architecture top of clked_t is 
signal s1: std_logic; 

end clked_t; 

entity clked_t is 

library ieee; 
use ieee.std_logic_1164.all; 

Clocked Register (explicit memory): This is a T-ff


end if; 

if rising_edge(clk) then
begin
process (clk, s1) 

port (t, clk : in std_logic; 

end if; 

if t = '1' 

q 

and q.C = clk 

else s1 <= s1; 
then s1 <= NOT s1; 

: out std_logic); 



working. This is the entity for this counter. The architecture comes next. 
Note we are using generic to define a number which we can easily redefine once we get the thing 

end ctr; 

port( 
clk: in std_logic; 
n_clr, n_ld, enp, ent: in std_logic; 

entity ctr is 
generic (width: integer := 4); -- allows to change width easily 

use work.std_arith.all; 

library ieee; 
use ieee.std_logic_1164.all; 

Example: build a counter


rco out std_logic); 
cnt out std_logic_vector (width-1 downto 0);
data in std_logic_vector (width-1 downto 0); 



end behavioral; 
cnt <= intcnt; 

zco <= '1' when ((ent = '1') AND (intcnt = allones)) 

end process clocked;
allones <= (others => '1'); 

begin
if rising_edge(clk) then 

clocked: process (clk) 

signal intcnt, allones: std_logic_vector (width-1 downto 0);
begin 

Architecture behavioral of ctr is 

end if; 
end if; 

elsif (enp = '1') and (ent = '1') then 
intcnt <= intcnt +1; 

intcnt <= data; 

intcnt <= (others => '0');
elsif n_ld = '0' then 

if n_clr = '0' then 

else '0'; 



 y
end divby5; 

entity divby5 is port
( 

use work.std_arith.all; 

library ieee; 
use ieee.std_logic_1164.all; 

Here is a suitable entity declaration:


remainder. Output is the bit by bit dividend. 
Binary divide by 5, bitwise. This is a simple FSM for which current state is the running 

Construction of a finite state machine in VHDL


x, clk : in std_logic;
: out std_logic); 



n_s <= state0; 
if x = '1' then 

when state2 => 
end if; 

n_s <= state2; 
else 

n_s <= state3; 

when state1 => y <= '0';
if x = '1' then 

end if; 
n_s <= state0; 

else 
n_s <= state1; 

architecture state_machine if divby5 is 
type StateType is (state0, state1, state2, state3, state4);
signal p_s, n_s : StateType; 

begin
fsm: process (p_s, x)
begin

case p_s is
when state0 => y <= '0';

if x = '1' then 

else 
y <= '1'; 

Continued next slide... 



end process state_clocked;
end architecture state_machine; 

p_s <= n_s;
end if; 

begin
if rising_edge(clk) then 

end process fsm; 
state-clocked : process (clk) 

when others => n_s <= state0; -- avoid trap states
end case 

end if; 
n_s <= state3; 

else 
n_s <= state4; 

when state4 => y <= '1';
if x = '1' then 

end if; 
n_s <= state1; 

else 
n_s <= state2; 

when state3 => y <= '1';
if x = '1' then 

y <= '0';
end if; 

n_s <= state4; 


