
6.111 Lecture # 7

Take another look at that divide by five FSM.

Here is, roughly what we would expect
from the Mealey machine model of that
thing with inputs and outputs as
specified

Here is the VHDL code from last time, crowded
onto a single sheet:

library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;
entity divby5 is port

(
x, clk : in std_logic;
y : out std_logic);

end divby5;
architecture state_machine if divby5 is

type StateType is (state0, state1, state2, state3,
state4);

signal p_s, n_s : StateType;
begin

fsm: process (p_s, x)
begin

case p_s is
when state0 => y <= '0';

if x = '1' then
n_s <= state1;

else
n_s <= state0;

end if;
when state1 => y <= '0';

if x = '1' then
n_s <= state3;

else
n_s <= state2;

end if;

when state2 =>
if x = '1' then

n_s <= state0;
y <= '1';

else
n_s <= state4;

y <= '0';
end if;

when state3 => y <= '1';
if x = '1' then

n_s <= state2;
else

n_s <= state1;
end if;

when state4 => y <= '1';
if x = '1' then

n_s <= state4;
else

n_s <= state3;
end if;

when others => n_s <= state0;
-- avoid trap states

end case
end process fsm;
state-clocked : process (clk)

begin
if rising_edge(clk) then

p_s <= n_s;
end if;

end process state_clocked;
end architecture state_machine;

And when we simulate it, here is what we get

Note that the output is the overlap of the input bit and the state
(when in state 2, so the output depends on the input directly

Modification to register the output:

library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;
entity divby5 is port

(
x, clk : in std_logic;
y : out std_logic);

end divby5;

architecture state_machine of divby5 is
type StateType is (state0, state1, state2, state3,

state4);
signal p_s, n_s : StateType;

signal ans : std_logic := '0'; -- new

begin
fsm: process (p_s, x)
begin

case p_s is
when state0 => ans <= '0';

if x = '1' then
n_s <= state1;

else
n_s <= state0;

end if;
when state1 => ans <= '0';

if x = '1' then
n_s <= state3;

else
n_s <= state2;

end if;

when state2 =>
if x = '1' then

n_s <= state0;
ans <= '1';

else
n_s <= state4;
ans <= '0';

end if;
when state3 => ans <= '1';

if x = '1' then
n_s <= state2;

else
n_s <= state1;

end if;
when state4 => ans <= '1';

if x = '1' then
n_s <= state4;

else
n_s <= state3;

end if;
when others => n_s <= state0; -- avoid

trap states
end case;

end process fsm;
state_clocked : process (clk)

begin
if rising_edge(clk) then

p_s <= n_s;
y <= ans; -- register output

end if;
end process state_clocked;

end architecture state_machine;

On simulation, we note that:
1. Each of the output bits is one clock cycle long
2. But the output is delayed one clock cycle

Topics for today
Certain issues in timing and handling pulse like signals
Lab 2

This is a very small up/down counter

The logic is straightforward to design

Note it has two flip flops but does not use all four states

But look at a possible timing issue:
IF we are in state 10
IF u = 1, we stay in state 10
IF u=0, we go to state 01
IF u=0 and then makes a transition to 1, we still want to stay in state 10
BUT if u=0 and then makes a transition to 1 too close to the clock edge,

The transition of D0 from 1 to 0 is delayed with respect to D1
(by one gate delay)

And it this happens the thing goes into a state it isn't supposed to

Design Rule:
1. Synchronize ALL external signals
2. Any asynchrous input must affect ONLY ONE flip-flop (which is

switched synchronously with all of the other flip-flops)

Timing techniques
One problem is to catch a signal that may be shorter than your clock
cycle.

Note that here we have one use
for the S-R latch.

This does well at catching a very
short pulse, but if /GO is low for
several clock cycles, P will have
several pulses.

You might want to think about
how to design a circuit which
takes a /GO signal of arbitrary
length and produces a SINGLE
pulse in response.

Here is a candidate for that
It generates a single pulse (one clock cycle wide)
But note that A has to be asserted on a positive going clock edge

VHDL Code for short pulse catcher

library ieee;
use ieee.std_logic_1164.all;
entity spulse is

port(N_GO, CLK, CLKIN: in std_logic;
P: out std_logic);

end spulse;

-- purpose: catch a short pulse
architecture behavioral of spulse is

signal A, N_A, X, N_X, N_CLK: std_logic;
attribute synthesis_off of A: signal is true;
attribute synthesis_off of N_A: signal is true;

begin -- behavioral
A <= (not N_GO) or (not N_A);
N_A <= (not A) or (not N_X);
N_X <= (not X);
P <= X and N_CLK;
N_CLK <= (not CLKIN);

ff: process(CLK)
begin

if rising_edge(CLK) then
X <= A;

end if;
end process ff;

end behavioral;

Note the rather odd
looking syntax here: using
the attribute synthesis_off
tells the compiler to not
optimize away the latch

This combinatoric part of
the code describes the SR
latch and the output

The process describes
the d- flip-flop

VHDL Code for pulse shaper

library ieee;
use ieee.std_logic_1164.all;
entity pform is

port(A, CLK, CLKIN: in std_logic;
P: out std_logic);

end pform;

-- purpose: catch a short pulse
architecture behavioral of pform is

signal X, N_Y: std_logic;
begin -- behavioral
ff: process(CLK)

begin
if rising_edge(CLK) then

X <= A;
N_Y <= (NOT X);

end if;
end process ff;

P <= (X AND N_Y);
end behavioral;

Lab 2 assignment is yet another traffic light
This time you control it
It looks like a familiar situation
Main and side streets, with a walk light on demand

Main street part of cycle is
longer than side street
(Tbase+Text)

But side street has a traffic
sensor which keeps it green a
bit longer. (Text)

Traffic sensor must be
synchronized.

Walk button must be latched
and serviced at the right
time, and unlatched after it
has been serviced

Details: walk is R-Y.
Blink is Main Y, Side R,
ON/OFF, equal intervals
(Tblink).

Design Procedure:
Start with a simple block diagram
Break design down into more, simpler blocks
Here is a top level block diagram for a controller

Note this GO signal is
similar to what we
were discussing
earlier: a single pulse
in response to a
pushbutton (which
could be any length)

Inputs Outputs (light signals)

This is a conceptual developed block diagram for the machine

We want you to use REAL RAM,
The FSM should be implemented in a CPLD do not include it in your CPLD

The Hex LED's are used
to examine memory

It is your call if you
want to implement the
timer and divider in
the CPLD (We expect
you probably will
want to do it this way

Inputs To Your FSM:

RESET (from a switch)

GOSYNC (from Synchronizer)

F1, F0 Function Selection (from switches)

L1, L0 RAM Address

Sensor Traffic Sensor (synchronized from a switch)

WR Walk Request (Re-settable latch from pushbutton)

EXPIRED Signal that timer has timed out

Outputs From Your FSM

A1, A0 SRAM Address

WE SRAM Write Enable (source of bus signal)

StartTimer Resets 1 second increment timer

Gm, Ym, Rm,

Gs, Ys, Rs Traffic light control signals

Control Specifications

Here are the functions your controller must implement

F1 F0 are the function control switches

0 0 Examine Memory Location Specified by Switches

0 1 Store Value in Memory Location Specified by Switches

1 0 Run Traffic Lights

1 1 Blink

And for writing to or examining memory (functions 0 and 1) you

should use these addresses:

A1 A0

0 0 TYEL Time for yellow light

0 1 TBASE Base interval

1 0 TEXT Extension interval

1 1 TBLINK Blink Interval

