
softwarestudio
modularity & dependences

Daniel Jackson

1

what makes a system “modular”?

in traditional engineering
› components can be built, tested & replaced independently

in software engineering
› components can also be reasoned about independently

› changes to components are “localized” or “contained”

containing failures?
› may not follow from modularity

› maybe the opposite (since modularity encourages sharing)

“The current configuration of electronics on the
Dreamliner puts passenger electronic entertainment on
the same computer network as the flight control system.”
http://www.wired.com/politics/security/news/2008/01/dreamliner_security

2

http://www.wired.com/politics/security/news/2008/01/dreamliner_security

when does modularity fail?

client-service binding
› when service changes, client must too

› eg: old apps fail on new release of OS

abstraction violation
› service doesn’t change, but client must anyway
› eg: representation of datatype is leaked

module-problem binding
› one piece of the problem in two modules
› eg: document is paragraph-structured, in Word

3

Parnas’s uses relation

Client

uses

Service

4

example: a browser

Main

Renderer Parser Protocol

Page DOM Network

5

minimal subsets

a common problem
› suppose you want module M
› what other modules do you need?

solution
› you need all the modules M uses
› and the ones they use...

examples
› minimal subset for Renderer? for Parser?

6

other uses of uses

you change module M
› which modules might break?

you want to test M
› which modules must be complete?

you want to reason about M
› which module’s specs do you need?

7

software subtlety

X may use Y without knowing about it
› eg, because Y is configured dynamically
› X only knows interface of Y

example: observer pattern
› interface I interposed between subject S and observer O
› now S depends on I, but not on O

Interface Subject

Observer
8

layering: a common pattern

Android architecture from https://community.freescale.com/community/the
embedded-beat/blog/2010/05/24/android-makes-the-move-to-power-architecture-technology 9

Diagram of Android's multi-layered operating system architecture (in "The Embedded Beat")
removed due to copyright restrictions.

https://community.freescale.com/community/the-embedded-beat/blog/2010/05/24/android-makes-the-move-to-power-architecture-technology
https://community.freescale.com/community/the-embedded-beat/blog/2010/05/24/android-makes-the-move-to-power-architecture-technology

Main

Renderer Parser Protocol

PageDOM

Network

back edges

Main

Renderer Parser Protocol

Page DOM

Network

10

design structure matrix

11

Matrix of classes of Spring framework (in "Dependency Structure Matrix")
removed due to copyright restrictions.

http://erik.doernenburg.com/2010/04/dependency-structure-matrix

highlighting back edges

from: http://www.lattix.com/products/modules/java

12

Courtesy of Lattix, Inc. Used with permission.

http://www.lattix.com/products/modules/java

how to avoid modularity failures

client-service binding
› control dependences, especially back edges

abstraction violation
› make sure clients only rely on specs

› use language abstraction constructs

module-problem binding
› encapsulate design decisions

› this is “information hiding”

13

DRY

a rule of thumb
› “Don’t Repeat Yourself”

can you explain this rule?
› how does it relate to uses? information hiding?
› what are its limitations?

14

MIT OpenCourseWare
http://ocw.mit.edu

6.170 Software Studio
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

