
softwarestudio 
modularity & dependences
 

Daniel Jackson
 
1



 

what makes a system “modular”? 

in traditional engineering 
› components can be built, tested & replaced independently
 

in software engineering 
› components can also be reasoned about independently
 
› changes to components are “localized” or “contained”
 

containing failures? 
› may not follow from modularity
 
› maybe the opposite (since modularity encourages sharing)
 

“The current  configuration of electronics on the 
Dreamliner puts passenger electronic entertainment on 
the same computer network as the flight control system.” 
http://www.wired.com/politics/security/news/2008/01/dreamliner_security 
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when does modularity fail? 

client-service binding 
› when service changes, client must too
 
› eg: old apps fail on new release of OS
 

abstraction violation 
› service doesn’t change, but client must anyway 
› eg: representation of datatype is leaked 

module-problem binding 
› one piece of the problem in two modules 
› eg: document is paragraph-structured, in Word 
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Parnas’s uses relation
 

Client 

uses
 

Service 
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example: a browser
 

Main 

Renderer Parser Protocol 

Page DOM Network 
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minimal subsets 

a common problem 
› suppose you want module M 
› what other modules do you need? 

solution 
› you need all the modules M uses 
› and the ones they use... 

examples 
› minimal subset for Renderer? for Parser?
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other uses of uses 

you change module M 
› which modules might break? 

you want to test M 
› which modules must be complete?
 

you want to reason about M 
› which module’s specs do you need?
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software subtlety 

X may use Y without knowing about it 
› eg, because Y is configured dynamically 
› X only knows interface of Y 

example: observer pattern 
› interface I interposed between subject S and observer O 
› now S depends on I, but not on O 

Interface Subject 

Observer 
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layering: a common pattern
 

Android architecture from  https://community.freescale.com/community/the
embedded-beat/blog/2010/05/24/android-makes-the-move-to-power-architecture-technology 9

Diagram of Android's multi-layered operating system architecture (in "The Embedded Beat")
removed due to copyright restrictions.

https://community.freescale.com/community/the-embedded-beat/blog/2010/05/24/android-makes-the-move-to-power-architecture-technology
https://community.freescale.com/community/the-embedded-beat/blog/2010/05/24/android-makes-the-move-to-power-architecture-technology


Main

Renderer Parser Protocol

PageDOM

Network

back edges
 

Main 

Renderer Parser Protocol 

Page DOM 

Network 
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design structure matrix
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Matrix of classes of Spring framework (in "Dependency Structure Matrix")
removed due to copyright restrictions.

http://erik.doernenburg.com/2010/04/dependency-structure-matrix


highlighting back edges
 

from: http://www.lattix.com/products/modules/java
 
12

Courtesy of Lattix, Inc. Used with permission.

http://www.lattix.com/products/modules/java


how to avoid modularity failures
 

client-service binding 
› control dependences, especially back edges
 

abstraction violation 
› make sure clients only rely on specs
 
› use language abstraction constructs
 

module-problem binding 
› encapsulate design decisions

› this is “information hiding”
 

13



DRY 

a rule of thumb 
› “Don’t Repeat Yourself” 

can you explain this rule? 
› how does it relate to uses? information hiding? 
› what are its limitations? 
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