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Heap Storage in C
Allocation

f

Aligned allocation

f

Deallocation

f

Heap Storage in C 
● Allocation 

void* malloc(size_t s); 
E fect: Allocate and return a pointer to a block of 
memory containing at least s bytes. 

● Aligned allocation 
void* memalign(size_t a, size_t s); 
E fect: Allocate and return a pointer to a block of 
memory containing at least s bytes, aligned to a 
multiple of a, where a must be an exact power of 2: 

0 == ((size_t) memalign(a, s)) % a . 
● Deallocation 

void free(void *p); 
E fect: p is a pointer to a block of memory returned 
by malloc() or memalign(). Deallocate the block. 
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Allocating Virtual Memory
The mmap() system call can be used to allocate 
virtual memory by memory mapping: 

void *p = mmap(0,                 // Don't care where
size,                   // #bytes
PROT_READ | PROT_WRITE, // Read/write
MAP_PRIVATE | MAP_ANON, // Private anonymous
-1,                     // no backing file
0                       // offset (N/A)

);

The Linux kernel finds a contiguous, unused region in 
the address space of the application large enough to 
hold size bytes, modifies the page table, and creates 
the necessary virtual-memory management structures 
within the OS to make the user’s accesses to this area 
“legal” so that accesses won’t result in a segfault. 

© 2008-2018 by the MIT 6.172 Lecturers 
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Properties ofProperties of mmap() 

● mmap() is lazy. It does not immediately allocate 
physical memory for the requested allocation. 

● Instead, it populates the page table with entries 
pointing to a special zero page and marks the page 
as read only. 

● The first write into such a page causes a page fault. 
● At that point, the OS allocates a physical page, 

modifies the page table, and restarts the 
instruction. 

● You can mmap() a terabyte of virtual memory on a 
machine with only a gigabyte of DRAM. 

● A process may die from running out of physical 
memory well after after the mmap() call. 

© 2008-2018 by the MIT 6.172 Lecturers 
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What’s the Difference…What’s the Difference… 

…between malloc() and mmap() used in this way? 

● The functions malloc() and free() are part of the 
memory-allocation interface of the heap-
management code in the C library. 

● The heap-management code uses available 
system facilities, including mmap(), to obtain 
memory (virtual address space) from the kernel. 

● The heap-management code within malloc() 
attempts to satisfy user requests for heap 
storage by reusing freed memory whenever 
possible. 

● When necessary, the malloc() implementation 
invokes mmap() and other system calls to 
expand the size of the user’s heap storage. 
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Address Translation

⋮

virtual address physical memory 

offset search 

physical address 
page table 

virtual page # offset 

frame # 

frame 0 

frame 1 

frame 2 

frame 3 

page table 

frame # offset 

If the virtual page does not reside in 
physical memory, a page fault occurs. 
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Address Translation

virtual page # offset 

virtual address 

frame # offset 

physical address 

frame 0 

frame 1 

frame 2 

frame 3 

⋮

physical memory 

search offset 

frame # 

page table 

Since page-table lookups are costly, the hardware 
contains a translation lookaside buffer (TLB) to 
cache recent page-table lookups. 
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Traditional Linear Stack

An execution of a serial C/C++ program can be 
viewed as a serial walk of an invocation tree. 
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invocation tree views of stack 
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Traditional Linear Stack

Rule for pointers: A parent can pass pointers to its 
stack variables down to its children, but not the 
other way around. 
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Cactus Stack

A cactus stack supports multiple views in parallel. 
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Heap-Based Cactus Stack
A heap-based cactus stack allocates frames off the heap. 

A

C

D E

B
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Space Bound

Theorem. Let S1 be the stack space required by a 
serial execution of a Cilk program.  The stack space of 
a P-worker execution using a heap-based cactus stack 
is at most SP ≤ P S1. 
Proof. Cilk’s work-stealing 
algorithm maintains the 
busy-leaves property: 
Every active leaf frame has 
a worker executing it. ∎

S1 

P = 4 
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D&C Matrix Multiplication
void mm_dac(double *restrict C, int n_C,

double *restrict A, int n_A,
double *restrict B, int n_B,
int n)

{ // C = A * B  
assert((n & (-n)) == n);
if (n <= THRESHOLD) {

mm_base(C, n_C, A, n_A, B, n_B, n);
} else {

double *D = malloc(n * n * sizeof(*D));
assert(D != NULL);
#define n_D n
#define X(M,r,c) (M + (r*(n_ ## M) + c)*(n/2))
cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2);
cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2);
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, X(B,0,0), n_B, n/2);
cilk_spawn mm_dac(X(C,1,1), n_C, X(A,1,0), n_A, X(B,0,1), n_B, n/2);
cilk_spawn mm_dac(X(D,0,0), n_D, X(A,0,1), n_A, X(B,1,0), n_B, n/2);
cilk_spawn mm_dac(X(D,0,1), n_D, X(A,0,1), n_A, X(B,1,1), n_B, n/2);
cilk_spawn mm_dac(X(D,1,0), n_D, X(A,1,1), n_A, X(B,1,0), n_B, n/2);

mm_dac(X(D,1,1), n_D, X(A,1,1), n_A, X(B,1,1), n_B, n/2);
cilk_sync;
m_add(C, n_C, D, n_D, n);
free(D);

}
}

Notice that 
allocations of 
the temporary 
matrix D obey a 
stack discipline. double *D = malloc(n * n * sizeof(*D));

free(D);
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Analysis of D&C Matrix Mult.

We can actually prove a stronger bound. 
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Worst-Case Recursion Tree

way) until we (n/2)2 (n/2)2 

get to a level k 8 
with P nodes … (n/2k)2 (n/2k)2 (n/2k)2 
and then 
branch serially 

… from there on. 
P nodes 

Θ(1) Θ(1) Θ(1) 

We have 8k = P, which implies that k = log8P = (lg P)/3. 
The cost per level grows geometrically from the root to 
level k and then decreases geometrically from level k to 
the leaves.  Thus, the space is Θ(P(n/2(lg P)/3)2) = Θ(P1/3n2). 
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Interoperability
Problem: With heap-based linkage, parallel functions 
fail to interoperate with legacy and third-party serial 
binaries.  Our implementation of Cilk uses a less 
space-efficient strategy that preserves interoperability 
by using a pool of linear stacks. 

A

CC

D E

B
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Allocator Speed

Definition. speed

Allocator Speed 

Definition. Allocator speed is the number of 
allocations and deallocations per second that the 
allocator can sustain. 
Q. Is it more important to maximize allocator 

speed for large blocks or small blocks? 
A. Small blocks! 
Q. Why? 
A. Typically, a user program writes all the bytes 

of an allocated block. A large block takes so 
much time to write that the allocator time has 
little effect on the overall runtime. In contrast, 
if a program allocates many small blocks, the 
allocator time can represent a significant 
overhead. 
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Fragmentation
Definition. user footprint

allocator
footprint

fragmentation

Remark

Theorem .

Remark.

Fragmentation 
Definition. The user footprint is the maximum over 
time of the number U of bytes in use by the user 
program (allocated but not freed).  The allocator 
footprint is the maximum over time of the number A 
of bytes of memory provided to the allocator by the 
operating system. The fragmentation is F = A/U. 

Remark. A grows monotonically for many 
allocators. 
Theorem (proved in Lecture 11). The fragmentation 
for binned free lists is FV = O(lg U). ∎ 
Remark. Modern 64-bit processors provide about 
248 bytes of virtual address space.  A big server 
might have 240 bytes of physical memory. 
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Fragmentation GlossaryFragmentation Glossary 

∙ Space overhead: Space used by the allocator for 
bookkeeping. 
∙ Internal fragmentation: Waste due to allocating 

larger blocks than the user requests. 
∙ External fragmentation: Waste due to the inability 

to use storage because it is not contiguous. 
∙ Blowup: For a parallel allocator, the additional 

space beyond what a serial allocator would require. 

© 2008-2018 by the MIT 6.172 Lecturers 
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Strategy 1: Global Heap

∙Default C allocator. 
∙All threads (processors) 

share a single heap. 
∙Accesses are mediated 

by a mutex (or lock-free 
synchronization) to
preserve atomicity. 

J Blowup = 1. 
L Slow — acquiring a 

lock is like an L2-cache 
access. 

L Contention can inhibit 
scalability. 

global heap 
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ScalabilityScalability 
Ideally, as the number of threads (processors) 
grows, the time to perform an allocation or 
deallocation should not increase. 
∙ The most common reason for loss of scalability 

is lock contention. 
Q. Is lock contention more of a problem for large 

blocks or for small blocks? 
A. Small blocks! 
Q. Why? 
A. Typically, a user program writes all the bytes of 

an allocated block, making it hard for a thread 
allocating large blocks to issue allocation 
requests at a high rate.  In contrast, if a program 
allocates many small blocks in parallel, 
contention can be a significant issue. 
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Strategy 2: Local Heaps

∙ Each thread allocates 
out of its own heap. 
∙No locking is necessary. 

J Fast — no 
synchronization. 

L Suffers from memory 
drift: blocks allocated 
by one thread are freed 
on another ⇒
unbounded blowup. 

heap heap heap heap 
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Strategy 3: Local Ownership

∙ Each object is labeled 
with its owner. 
∙ Freed objects are 

returned to the owner’s 
heap. 

J Fast allocation and 
freeing of local 
objects. 

L Freeing remote 
objects requires 
synchronization. 

K Blowup ≤ P. 
J Resilience to false 

sharing. 
© 2008-2018 by the MIT 6.172 Lecturers 
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False Sharing Example

… 
P P P

Write x

x y
The compiler happens 
to place x and y in the 
same cache block. 
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False Sharing Example

… 
P P P

x y Write y

The compiler happens 
to place x and y in the 
same cache block. 
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False Sharing Example

… 
P P P

x y
Write x

The compiler happens 
to place x and y in the 
same cache block. 
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False Sharing Example

… 
P P P

x y Write y

The compiler happens 
to place x and y in the 
same cache block. 
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How False Sharing Can OccurHow False Sharing Can Occur 
A program can induce false sharing having
different threads process nearby objects. 
∙ The programmer can mitigate this problem by 

aligning the object on a cache-line boundary and 
padding out the object to the size of a cache line, but 
this solution can be wasteful of space. 

An allocator can induce false sharing in two ways: 
∙ Actively, when the allocator satisfies memory 

requests from different threads using the same cache 
block. 

∙ Passively, when the program passes objects lying on 
the same cache line to different threads, and the 
allocator reuses the objects’ storage after the objects 
are freed to satisfy requests from those threads. 

© 2008-2018 by the MIT 6.172 Lecturers 
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The Hoard Allocator

∙ P local heaps. 
∙1 global heap. 
∙Memory is organized 

into large superblocks 
of size S. 
∙Only superblocks are 

moved between the 
local heaps and the 
global heap. 

J Fast. 
J Scalable. 
J Bounded blowup. 
J Resilience to false 

sharing. 

heap heap heap heap 

global heap 

heap 
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Hoard Allocation
Assume without loss of generality that all 
blocks are the same size (fixed-size allocation). 

if (there exists a free object in heap i) {
x = an object from the fullest nonfull superblock in i’s heap;

} else {
if (the global heap is empty) {
B = a new superblock from the OS;

} else {
B = a superblock in the global heap;

}
set the owner of B to i;
x = a free object in B;

}
return x;

x = malloc() on thread i

© 2008-2018 by the MIT 6.172 Lecturers 
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Hoard Deallocation

Let ui be the in-use storage in heap i, and 
let ai be the storage owned by heap i. 
Hoard maintains the following invariant for 
all heaps i: 

ui ≥ min(ai - 2S, ai/2), 
where S is the superblock size. 

free(x), where x is owned by thread i: 
put x back in heap i;
if (ui < min(ai - 2S, ai/2)) {

move a superblock that is at least 1/2 empty from 
heap i to the global heap;

};

© 2008-2018 by the MIT 6.172 Lecturers 
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Hoard’s Blowup
Lemma.

Theorem.

Proof.

Hoard’s Blowup 
Lemma. The maximum storage allocated in 
global heap is at most maximum storage 
allocated in local heaps. 
Theorem. Let U be the user footprint for a 
program, and let A be Hoard’s allocator 
footprint. We have 

A ≤ O(U + SP) , 
and hence the blowup is 

A/U = O(1 + SP/U) . ∎ 

Proof. Analyze storage in local heaps. 
Recall that ui ≥ min(ai - 2S, ai/2). 
First term: at most 2S unutilized storage per 
heap for a total of O(SP). 
Second term: allocated storage is at most twice 
the used storage for a total of O(U). ∎ 

© 2008-2018 by the MIT 6.172 Lecturers 
38



 

  
    

    

 

  

      

 
 

Other SolutionsOther Solutions 
jemalloc is like Hoard, with a few differences: 
● jemalloc has a separate global lock for each 

different allocation size. 
● jemalloc allocates the object with the smallest 

address among all objects of the requested size. 
● jemalloc releases empty pages using 

madvise(p, MADV_DONTNEED, ...) , 
which zeros the page while keeping the virtual 
address valid. 

● jemalloc is a popular choice for parallel systems 
due to its performance and robustness. 

SuperMalloc is an up-and-coming contender.  (See 
paper by Bradley C. Kuszmaul.) 
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Allocator Speeds

Allocator SLOC threads

Allocator Speeds 

Allocator SLOC 32 threads 
Default 6,281 0.97 M/s 
Hoard 16,948 17.1 M/s 
jemalloc 22,230 38.2 M/s 
SuperMalloc 3,571 131.7 M/s 
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Copying Garbage Collector

FROM space 

next 
allocation 

dead 

live 

unused 

When the FROM space is “full,” copy live storage 
using BFS with the TO space as the FIFO queue. 

TO space 

next 
allocation 
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Updating PointersUpdating Pointers 

Since the FROM address of an object is not generally 
equal to the TO address of the object, pointers must 
be updated. 
∙ When an object is copied to the TO space, store a 

forwarding pointer in the FROM object, which 
implicitly marks it as moved. 

∙ When an object is removed from the FIFO queue in 
the TO space, update all its pointers. 
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Example

head tail

FROM 

TO 

Remove an item from the queue. 
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Example

head tail

FROM 

TO 

Remove an item from the queue. 
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Example

head tail

FROM 

TO 

Enqueue adjacent vertices. 
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Example

head tail

FROM 

TO 

Enqueue adjacent vertices. 
Place forwarding pointers in FROM vertices. 
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Example

head tail

FROM 

TO 

Update the pointers in the removed item to refer 
to its adjacent items in the TO space.  
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Example

head tail

FROM 

TO 

Update the pointers in the removed item to refer 
to its adjacent items in the TO space.  
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Types of Garbage Collectors

Stop-the-world collector 
• Program pauses once in a while and garbage 

collector (GC) does work across all of memory 
• High program pause times 

Program GC Program GC … 

Incremental collector 
• Collector cleans up a small part of memory every 

time it executes 
• Low program pause times 

Program GC … Program GC Program GC 
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      Running Collector with ProgramRunning Collector with Program 

∙ Incremental version of copying collector. 

∙ When it is time to collect, application program and 
garbage collector take turns running. 

© 2008-2018 by the MIT 6.172 Lecturers 
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Running Collector with Program

FROM 

TO 

head tail

If an object O already dequeued in BFS gains a 
reference to another object O’, the BFS may not 
find O’ and it will be freed. 
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Running Collector with Program

FROM 

TO 

head tail

If an object O already dequeued in BFS gains a 
reference to another object O’, the BFS may not 
find O’ and it will be freed. 
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Baker’s AlgorithmBaker’s Algorithm 
∙ Program follows forward pointer if there is one. 

∙ Whenever the program accesses an object not in 
the TO space, mark object as explored and copy it 
over to the TO space. 

∙ Whenever the program allocates an object, put it in 
the TO space. 

∙ Requires a read barrier to intercept every read with 
a check, which is expensive. 

∙ This algorithm is conservative in that it does not 
necessarily collect all garbage. Why? 
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Nettles-O’Toole AlgorithmNettles-O’Toole Algorithm 
∙ Program works only in FROM space until garbage 

collection is finished. 

∙ Replicates the objects by keeping mutations to 
FROM-space objects in a log. 

∙ Garbage collector applies the mutations to 
corresponding TO-space objects. 

∙ Requires a write barrier to log mutations on every 
write 
∙ This is expensive, but writes are usually much 

less frequent than reads. 

∙ Is this algorithm conservative? 
© 2008-2018 by the MIT 6.172 Lecturers 
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Garbage Collection GlossaryGarbage Collection Glossary 

∙ Stop-the-world: Garbage collector does all of its 
work across memory while pausing program. 
∙ Incremental: Garbage collector runs incrementally, 

allowing pause times to be bounded. 
∙ Parallel: Multiple collector threads are running 

simultaneously. 
∙ Concurrent: At least one program thread and one 

collector thread are running simultaneously. 
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Parallel and Concurrent GCParallel and Concurrent GC 
∙ Based on Nettles-O’Toole algorithm 

∙ High-level idea
∙ Use per-processor local stacks for search 

∙ Maintain a shared stack for load balancing 
∙ Processors periodically transfer objects between 

local and shared stack 

∙ Use synchronization primitives (test-and-set and 
fetch-and-add) to manage concurrent accesses 

See “On Bounding Time and Space for Multiprocessor Garbage 
Collection” (PLDI 1999), and “A Parallel, Real-Time Garbage 
Collector” (PLDI 2001) by Cheng and Blelloch 
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SummarySummary 

∙ malloc() vs. mmap() 

∙ Cactus stacks 

∙ Cilk space bound of SP ≤ P S1 and better bound for 
matrix multiply 

∙ Parallel allocation strategies: global heap, local 
heaps, local ownership 

∙ Incremental garbage collection 

∙ Parallel and concurrent garbage collection 
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