6.172 Performance Engineering of Software Systems

1

SPEED LIMIT

PER ORDER OF 6.172

Recall: Basics of Cilk

Cilk keywords grant permission for parallel execution. They do not command parallel execution.

Loop Parallelism in Cilk

Example: In-place matrix transpose

The iterations of a cilk_for loop execute in parallel.

// indices run from 0, not 1 cilk_for (int i=1; i<n; ++i) {</pre> for (int j=0; j<i; ++j) {</pre> double temp = A[i][j]; A[i][j] = A[j][i];A[j][i] = temp;

DETERMINACY RACES

SPEED

LIMIT

PER ORDER OF 6.172

0

Race Conditions

Race conditions are the bane of concurrency. Famous race bugs include the following:

- Therac-25 radiation therapy machine — killed 3 people and seriously injured many more.
- North American Blackout of 2003 — left 50 million people without power.

Race bugs are notoriously difficult to discover by conventional testing!

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>

Image created by MIT OpenCourseWare from public domain image.

Determinacy Races

Definition. A determinacy race occurs when two logically parallel instructions access the same memory location and at least one of the instructions performs a write.

A Closer Look

Definition. A determinacy race occurs when two logically parallel instructions access the same memory location and at least one of the instructions performs a write.

Types of Races

Suppose that instruction A and instruction B both access a location x, and suppose that $A \parallel B$ (A is parallel to B).

Α	В	Race Type
read	read	none
read	write	read race
write	read	read race
write	write	write race

Two sections of code are independent if they have no determinacy races between them.

Avoiding Races

- Iterations of a cilk_for should be independent.
- Between a cilk_spawn and the corresponding cilk_sync, the code of the spawned child should be independent of the code of the parent, including code executed by additional spawned or called children.
 - Note: The arguments to a spawned function are evaluated in the parent before the spawn occurs.
- Machine word size matters. Watch out for races in packed data structures:

Ex. Updating x.a and x.b in parallel may cause a race! Nasty, because it may depend on the compiler optimization level. (Safe on Intel x86-64.)

Cilksan Race Detector

- The Cilksan-instrumented program is produced by compiling with the -fsanitize=cilk command-line compiler switch.
- If an ostensibly deterministic Cilk program run on a given input could possibly behave any differently than its serial elision, Cilksan guarantees to report and localize the offending race.
- Cilksan employs a regression-test methodology, where the programmer provides test inputs.
- Cilksan identifies filenames, lines, and variables involved in races, including stack traces.
- Ensure that all program files are instrumented, or you'll miss some bugs.
- Cilksan is your best friend.

Cilksan Output

\$ cilksan ./mm_dac

Race detected at address 0x65c070 Write access to C (declared at mm/mm dac.c:27) from 0x400ed0 mm base mm/mm dac.c:34:15 Called from 0x401868 mm dac mm/mm dac.c:57:5 Called from 0x4025d0 mm_dac mm/mm_dac.c:63:5 Spawned from 0x401548 mm dac mm/mm dac.c:63:5 Called from 0x4025d0 mm dac mm/mm dac.c:63:5 Spawned from 0x401548 mm_dac mm/mm_dac.c:63:5 Read access to C (declared at mm/mm_dac.c:27) from 0x400e27 mm_base mm/mm_dac.c:34:15 Called from 0x401868 mm dac mm/mm dac.c:57:5 Common calling context Called from 0x401c02 main mm/mm dac.c:85:3

0.686637

Race detector detected total of 47 races. Race detector suppressed 147409 duplicate error messages

WHAT IS PARALLELISM?

© 2008-2018 by the MIT 6.172 Lecturers

SPEED

LIMIT

PER ORDER OF 6.172

Execution Model

```
int fib (int n) {
  if (n < 2) return n;
  else {
    int x, y;
    x = cilk_spawn fib(n-1);
    y = fib(n-2);
    cilk_sync;
    return x + y;
}
```

Example:
fib(4)

Execution Model

Computation Dag

- A parallel instruction stream is a dag G = (V, E).
- Each vertex v ∈ V is a strand: a sequence of instructions not containing a spawn, sync, or return from a spawn.
- An edge $e \in E$ is a spawn, call, return, or continue edge.
- Loop parallelism (cilk_for) is converted to spawns and syncs using recursive divide-and-conquer.

How Much Parallelism?

Assuming that each strand executes in unit time, what is the parallelism of this computation?

Amdahl's "Law"

If 50% of your application is parallel and 50% is serial, you can't get more than a factor of 2 speedup, no matter how many processors it runs on.

Gene M. Amdahl

In general, if a fraction α of an application must be run serially, the speedup can be at most $1/\alpha$.

Quantifying Parallelism

What is the parallelism of this computation?

Amdahl's Law says that since the serial fraction is 3/18 = 1/6, the speedup is upper-bounded by 6.

Performance Measures

 T_P = execution time on P processors

Performance Measures

 T_P = execution time on P processors

Performance Measures

 T_P = execution time on P processors

 $T_{\infty} = span*$ = 9

WORK LAW
•
$$T_P \ge T_1/P$$

$$\begin{array}{|c|c|} \hline SPAN \ LAW \\ \bullet \ T_P \geq T_{\infty} \end{array}$$

*Also called critical-path length or computational depth.

Series Composition

Work: $T_1(A \cup B) = T_1(A) + T_1(B)$ Span: $T_{\infty}(A \cup B) = T_{\infty}(A) + T_{\infty}(B)$

Parallel Composition

Work: $T_1(A \cup B) = T_1(A) + T_1(B)$ Span: $T_{\infty}(A \cup B) = \max\{T_{\infty}(A), T_{\infty}(B)\}$

Speedup

Definition. $T_1/T_P = speedup$ on P processors.

- If $T_1/T_P < P$, we have sublinear speedup.
- If $T_1/T_P = P$, we have (perfect) linear speedup.
- If $T_1/T_P > P$, we have superlinear speedup, which is not possible in this simple performance model, because of the WORK LAW $T_P \ge T_1/P$.

Parallelism

Because the SPAN LAW dictates that $T_P \ge T_{\infty}$, the maximum possible speedup given T_1 and T_{∞} is

- $T_1/T_{\infty} = parallelism$
 - the average amount of work per step along the span
 - = 18/9= 2.

Example: fib(4)

Assume for simplicity that each strand in fib(4) takes unit time to execute.

Work: $T_1 = 17$ *Span:* $T_{\infty} = 8$ *Parallelism:* $T_1/T_{\infty} = 2.125$

Using many more than 2 processors can yield only marginal performance gains.

THE CILKSCALE SCALABILITY ANALYZER

© 2008–2018 by the MIT 6.172 Lecturers

SPEED

LIMIT

PER ORDER OF 6.172

Cilkscale Scalability Analyzer

- The Tapir/LLVM compiler provides a scalability analyzer called Cilkscale.
- Like the Cilksan race detector, Cilkscale uses compiler-instrumentation to analyze a serial execution of a program.
- Cilkscale computes work and span to derive upper bounds on parallel performance.

Quicksort Analysis

Example: Parallel quicksort

```
static void quicksort(size_t *left, size_t *right)
{
    if (left == right) return;
    size_t *p = partition(left, right); //run serially
    cilk_spawn quicksort(left, p);
    quicksort(p + 1, right);
    cilk_sync;
}
```

Analyze the sorting of 1,000,000 numbers. *** *Guess the parallelism!* ***

Theoretical Analysis

Example: Parallel quicksort

Expected work = $\Theta(n \lg n)$ Expected span = $\Theta(n)$

Parallelism = $\Theta(\lg n)$

Interesting Practical* Algorithms

Algorithm	Work	Span	Parallelism
Merge sort	Θ(n lg n)	Θ(lg³n)	Θ(n/lg²n)
Matrix multiplication	Θ(n ³)	Θ(lgn)	$\Theta(n^3/\lg n)$
Strassen	Θ(n ^{lg7})	Θ(lg²n)	$\Theta(n^{lg7}/lg^2n)$
LU-decomposition	Θ(n ³)	Θ(n lg n)	$\Theta(n^2/\lg n)$
Tableau construction	Θ(n ²)	Θ(n ^{lg3})	$\Theta(n^{2-lg_3})$
FFT	Θ(n lg n)	Θ(lg²n)	Θ(n/lg n)
Breadth-first search	Θ(Ε)	$\Theta(\Delta \log V)$	$\Theta(E/\Delta lg V)$

*Cilk on 1 processor competitive with the best C.

SCHEDULING THEORY

© 2008–2018 by the MIT 6.172 Lecturers

SPEED

LIMIT

 \bigcirc

PER ORDER OF 6.172

Scheduling

- Cilk allows the programmer to express potential parallelism in an application.
- The Cilk scheduler maps strands onto processors dynamically at runtime.
- Since the theory of distributed schedulers is complicated, we'll explore the ideas with a centralized scheduler.

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all its predecessors have executed.

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all its predecessors have executed.

Complete step

- \geq P strands ready.
- Run any P.

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all its predecessors have executed.

Complete step

- \geq P strands ready.
- Run any P.

Incomplete step

- < P strands ready.
- Run all of them.

Analysis of Greedy

Theorem [G68, B75, EZL89]. Any greedy scheduler achieves

 $\mathsf{T}_{\mathsf{P}} \leq \mathsf{T}_1/\mathsf{P} + \mathsf{T}_{\infty}.$

Proof.

- # complete steps ≤ T₁/P, since each complete step performs P work.
- # incomplete steps ≤ T_∞, since each incomplete step reduces the span of the unexecuted dag by 1.

Optimality of Greedy

Corollary. Any greedy scheduler achieves within a factor of 2 of optimal.

Proof. Let T_P^* be the execution time produced by the optimal scheduler. Since $T_P^* \ge \max\{T_1/P, T_\infty\}$ by the WORK and SPAN LAWS, we have $T_P \le T_1/P + T_\infty \le 2 \cdot \max\{T_1/P, T_\infty\} \le 2 \cdot \max\{T_1/P, T_\infty\}$

Linear Speedup

Corollary. Any greedy scheduler achieves nearperfect linear speedup whenever $T_1/T_{\infty} \gg P$.

Proof. Since $T_1/T_{\infty} \gg P$ is equivalent to $T_{\infty} \ll T_1/P$, the Greedy Scheduling Theorem gives us

 $\begin{array}{rcl} \mathsf{T}_{\mathsf{P}} &\leq \mathsf{T}_1/\mathsf{P} \,+\, \mathsf{T}_\infty \\ &\approx \mathsf{T}_1/\mathsf{P} \,\,. \end{array}$

Thus, the speedup is $T_1/T_P \approx P$.

Definition. The quantity $T_1/(PT_{\infty})$ is called the parallel slackness.

Cilk Performance

- Cilk's work-stealing scheduler achieves

 T_P = T₁/P + O(T_∞) expected time (provably);
 T_P ≈ T₁/P + T_∞ time (empirically).
- Near-perfect linear speedup as long as $P \ll T_1/T_\infty$.
- Instrumentation in Cilkscale allows you to measure T_1 and T_∞ .

PER ORDER OF 6.172

THE CILK RUNTIME SYSTEM

Each worker (processor) maintains a work deque of ready strands, and it manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

When a worker runs out of work, it steals from the top of a random victim's deque.

Each worker (processor) maintains a work deque of ready strands, and it manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

When a worker runs out of work, it steals from the top of a random victim's deque.

Each worker (processor) maintains a work deque of ready strands, and it manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

When a worker runs out of work, it steals from the top of a random victim's deque.

Each worker (processor) maintains a work deque of ready strands, and it manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

When a worker runs out of work, it steals from the top of a random victim's deque.

Each worker (processor) maintains a work deque of ready strands, and it manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

When a worker runs out of work, it steals from the top of a random victim's deque.

Each worker (processor) maintains a work deque of ready strands, and it manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

Theorem [BL94]: With sufficient parallelism, workers steal infrequently \Rightarrow linear speed-up.

Work-Stealing Bounds

Theorem [BL94]. The Cilk work-stealing scheduler achieves expected running time

 $\mathbf{T}_{\mathbf{P}} \approx \mathbf{T}_{1} / \mathbf{P} + \mathbf{O}(\mathbf{T}_{\infty})$

on P processors.

Pseudoproof. A processor is either working or stealing. The total time all processors spend working is T_1 . Each steal has a 1/P chance of reducing the span by 1. Thus, the expected cost of all steals is $O(PT_{\infty})$. Since there are P processors, the expected time is

 $(T_1 + O(PT_\infty))/P = T_1/P + O(T_\infty)$.

Cactus Stack

Cilk supports C's rule for pointers: A pointer to stack space can be passed from parent to child, but not from child to parent. *Views of stack*

Cilk's cactus stack supports multiple views in parallel.

Bound on Stack Space

Theorem. Let S_1 be the stack space required by a serial execution of a Cilk program. Then the stack space required by a P-processor execution is at most $S_P \leq PS_1$.

Proof (by induction). The work–stealing algorithm maintains the busy–leaves property: Every extant leaf activation frame has a worker executing it. ■

Summary

- Determinacy races are often bugs, and they can be detected using Cilksan
- Cilkscale can analyze the work, span, and parallelism of a computation
- A greedy scheduler is within a factor of 2 of the optimal scheduler
- Cilk uses a work-stealing scheduler with strong theoretical bounds on its running time

6.172 Performance Engineering of Software Systems Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.