

!"##$
%&'&(!
"#)*+)$#)*+,*-./01

6.172
Performance
Engineering
of Software
Systems

© 2008–2018 by the MIT 6.172 Lecturers

LECTURE 7
Races and Parallelism

Julian Shun

1

Recall: Basics of Cilk

!"# $!%&!"# "'
(

!$)&")*)+'),-#.,")"/
!"# 01)2/
0)3)4!56789:;" $!%&"<='/
2)3)$!%&"<+'/
4!56782"4/
,-#.,")0)>)2/

?

The named child function
may execute in parallel
with the parent caller.

Control cannot pass this
point until all spawned
children have returned.

Cilk keywords grant permission for parallel execution.
They do not command parallel execution.

© 2008–2018 by the MIT 6.172 Lecturers 2

Loop Parallelism in Cilk

Example: a11 a12 ! a1n a11 a21 ! an1
In-place a21 a22 ! a2n a12 a22 ! an2matrix

" " # " " " # "transpose
an1 an2 ! ann a1n a2n ! ann

A AT

The iterations
of a !"#$%&'(
loop execute
in parallel.

© 2008–2018 by the MIT 6.172 Lecturers

!!"#$%#&'(")*$"+),-"./"$,0"1
!"#$%&'()"*+ ",-./"0*./11"2/3

&'(/)"*+ 4,5./40"./1142/3
6'78#9/+9:;/,/<=">=4>.
<=">=4>/,/<=4>=">.
<=4>=">/,/+9:;.

?
?

3

!"##$
%&'&(!
"#)*+)$#)*+,*-./01

© 2008–2018 by the MIT 6.172 Lecturers

DETERMINACY RACES

4

Race Conditions
Race conditions are the
bane of concurrency.
Famous race bugs include
the following:
• Therac-25 radiation

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/therapy machine — killed

3 people and seriously
injured many more.

• North American Blackout
of 2003 — left 50 million
people without power.

Race bugs are notoriously
difficult to discover by
conventional testing!

Image created by MIT OpenCourseWare from public domain image.

© 2008–2018 by the MIT 6.172 Lecturers 5

https://commons.wikimedia.org/wiki/File:North_America_blank_map_with_state_and_province_boundaries.png
https://ocw.mit.edu/help/faq-fair-use/

Determinacy Races

!"# $ %&'(
)!*+,-./ 0!"# !%'1&!231&44!5&6

$44(
7
899:/#0$ %%&35(

!"#
)!*+,-./

A

B

7
C

7
899:/#0$D

Definition. A determinacy race occurs when two
logically parallel instructions access the same
memory location and at least one of the instructions
performs a write.

A

Example

B $44(

!"# $ %&'(

899:/#0$ %%&35(

$44(

D

dependency graph

© 2008–2018 by the MIT 6.172 Lecturers 6

C

A Closer Look

%''&

01- % $#)&

*++,!-.% $$#(/&

%''&

A

B C

D

!"#$#%&

!"''&

%#$#!"&

!(#$#%&

!(''&

%#$#!(&

%#$#)&

*++,!-.%#$$#(/&

© 2008–2018 by the MIT 6.172 Lecturers 7

Race Bugs

Definition. A determinacy race occurs when two
logically parallel instructions access the same
memory location and at least one of the instructions
performs a write.

1

2

3

4

5

6 7

8

#$'('")

#$**)

"'('#$)

#%'('")

#%**)

"'('#%)

"'('&)

+,,-#./"'(('%0)

!

"

&&& $$

! ! & $ &$$ $

#$ #%

© 2008–2018 by the MIT 6.172 Lecturers 8

Types of Races

Suppose that instruction A and instruction B
both access a location x, and suppose that
A∥B (A is parallel to B).

A B Race Type

read read none
read write read race
write read read race
write write write race

Two sections of code are independent if they
have no determinacy races between them.

© 2008–2018 by the MIT 6.172 Lecturers 9

Avoiding Races
• Iterations of a !"#$%&'(should be independent.
• Between a !"#$%)*+,- and the corresponding
!"#$%).-!, the code of the spawned child should
be independent of the code of the parent, including
code executed by additional spawned or called
children.
! Note: The arguments to a spawned function are evaluated

in the parent before the spawn occurs.

• Machine word size matters. Watch out for races in
packed data structures:

)/(0!/ 1
!2+(3+4
!2+(354

6374

Ex. Updating 78+ and 785 in parallel may
cause a race! Nasty, because it may
depend on the compiler optimization
level. (Safe on Intel x86-64.)

© 2008–2018 by the MIT 6.172 Lecturers 10

Cilksan Race Detector

• The Cilksan-instrumented program is produced
by compiling with the –fsanitize=cilk
command-line compiler switch.

• If an ostensibly deterministic Cilk program run on
a given input could possibly behave any differently
than its serial elision, Cilksan guarantees to report
and localize the offending race.

• Cilksan employs a regression-test methodology,
where the programmer provides test inputs.

• Cilksan identifies filenames, lines, and variables
involved in races, including stack traces.

• Ensure that all program files are instrumented, or
you’ll miss some bugs.

• Cilksan is your best friend.
© 2008–2018 by the MIT 6.172 Lecturers 11

Cilksan Output
! "#$%&'()*++,-'"
.
/'"01-020"20-1'21'--30&&14567"484
93#201'""0&&12:1;1<-0"$'30-1'21++*++,-'")"=>8?

@3:+145A440-41++,B'&0 ++*++,-'")"=CA=D7
;'$$0-1@3:+145A4DE6E1++,-'" ++*++,-'")"=78=7
;'$$0-1@3:+145A4>7-41++,-'" ++*++,-'")"=6C=7
FG'H(0-1@3:+145A4D7AE1++,-'" ++*++,-'")"=6C=7
;'$$0-1@3:+145A4>7-41++,-'" ++*++,-'")"=6C=7
FG'H(0-1@3:+145A4D7AE1++,-'" ++*++,-'")"=6C=7

/0'-1'""0&&12:11;1<-0"$'30-1'21++*++,-'")"=>8?
@3:+145A440>81++,B'&0 ++*++,-'")"=CA=D7

;'$$0-1@3:+145A4DE6E1++,-'" ++*++,-'")"=78=7
;:++:(1"'$$#(I1":(2052

;'$$0-1@3:+145A4D"4>1+'#(1++*++,-'")"=E7=C

4)6E66C8

/'"01-020"2:31-020"20-12:2'$1:@1A813'"0&)
/'"01-020"2:31&JGG30&&0-1DA8A4K1-JG$#"'201033:31+0&&'I0&

© 2008–2018 by the MIT 6.172 Lecturers 12

!"##$
%&'&(!
"#)*+)$#)*+,*-./01

© 2008–2018 by the MIT 6.172 Lecturers

WHAT IS PARALLELISM?

13

Execution Model

!"# $!%&'!"# "(&)
!$&'"&*&+(&,-#.,"&"/
-01-&)

!"# 23&4/
2&5&6!07819:;" $!%'"<=(/
4&5&$!%'"<+(/
6!07814"6/
,-#.,"&2&>&4/

?
?

Example:
$!%'@(

© 2008–2018 by the MIT 6.172 Lecturers 14

Execution Model

!"#&$!%&'!"#&"(&)&
!$&'"&*&+(&,-#.,"&"/&
-01-&)&

?&
?&

The computation dag
unfolds dynamically.

Example:
$!%'@(&

“Processor
oblivious”

!
!"#&23&4/&
2&5&6!07819:;"&$!%'"<=(/&
4&5&$!%'"<+(/&
6!07814"6/&
,-#.,"&2&>&4/& "

#

#

$

$ $ %

%

© 2008–2018 by the MIT 6.172 Lecturers 15

strand continue edge

return edge
spawn edge

Computation Dag

initial strand final strand

call edge

! A parallel instruction stream is a dag G = (V, E).
! Each vertex v ! V is a strand: a sequence of instructions

not containing a spawn, sync, or return from a spawn.
! An edge e ! E is a spawn, call, return, or continue edge.
! Loop parallelism (!"#$%&'() is converted to spawns and

syncs using recursive divide-and-conquer.

© 2008–2018 by the MIT 6.172 Lecturers 16

How Much Parallelism?

Assuming that each strand executes in unit time,
what is the parallelism of this computation?

© 2008–2018 by the MIT 6.172 Lecturers 17

Amdahl’s “Law”

Gene M. Amdahl

If 50% of your application is parallel
and 50% is serial, you can’t get more
than a factor of 2 speedup, no matter
how many processors it runs on.

In general, if a fraction ! of an application must
be run serially, the speedup can be at most 1/!.

Image courtesy of Perry Kivolowitz on Wikipedia. Used under CC-BY.
© 2008–2018 by the MIT 6.172 Lecturers 18

https://commons.wikimedia.org/wiki/File:Amdahl_march_13_2008.jpg

Quantifying Parallelism
What is the parallelism of this computation?

Amdahl’s Law says that
since the serial fraction is
3/18 = 1/6, the speedup
is upper-bounded by 6.

© 2008–2018 by the MIT 6.172 Lecturers 19

Performance Measures

TP = execution time on P processors

T1 = work
= 18

© 2008–2018 by the MIT 6.172 Lecturers 20

Performance Measures

TP = execution time on P processors

= 18
T1 = work T! = span*

= 9

*Also called critical-path length
or computational depth.

© 2008–2018 by the MIT 6.172 Lecturers 21

Performance Measures
TP = execution time on P processors

*Also called critical-path length
or computational depth.

WORK LAW
! TP "T1/P

SPAN LAW
! TP " T#

= 18 = 9
T1 = work T# = span*

© 2008–2018 by the MIT 6.172 Lecturers 22

Work: T1(A!B) =

Span: T"(A!B) =

Series Composition

A B

Work: T1(A!B) = T1(A) + T1(B)

Span: T"(A!B) = T"(A) + T"(B)

© 2008–2018 by the MIT 6.172 Lecturers 23

Work: T1(A!B) =

Span: T"(A!B) =

Parallel Composition

A

B

Work: T1(A!B) = T1(A) + T1(B)

Span: T"(A!B) = max{T"(A), T"(B)}

© 2008–2018 by the MIT 6.172 Lecturers 24

Speedup

Definition. T1/TP = speedup on P processors.

● If T1/TP < P, we have sublinear speedup.
● If T1/TP = P, we have (perfect) linear speedup.
● If T1/TP > P, we have superlinear speedup,

which is not possible in this simple
performance model, because of the WORK LAW
TP ≥ T1/P.

© 2008–2018 by the MIT 6.172 Lecturers 25

Parallelism

Because the SPAN LAW dictates that
TP ! T", the maximum possible
speedup given T1 and T" is
T1/T" = parallelism

= the average
amount of work
per step along
the span

= 18/9
= 2 .

© 2008–2018 by the MIT 6.172 Lecturers 26

=

=

Example: !"#$%&

4

5

6

1

2 7

8

3

Assume for simplicity
that each strand in
!"#$%& takes unit
time to execute.

Work: T1Work: T1 = 17

Span: T!Span: T! == 8

= 2.125 Parallelism: T1/T!Parallelism: T1/T!

Using many more than 2 processors can
yield only marginal performance gains.

© 2008–2018 by the MIT 6.172 Lecturers 27

!"##$
%&'&(!
"#)*+)$#)*+,*-./01

© 2008–2018 by the MIT 6.172 Lecturers

THE CILKSCALE
SCALABILITY ANALYZER

28

Cilkscale Scalability Analyzer

∙ The Tapir/LLVM compiler provides a scalability
analyzer called Cilkscale.

∙ Like the Cilksan race detector, Cilkscale uses
compiler-instrumentation to analyze a serial
execution of a program.

∙Cilkscale computes work and span to derive
upper bounds on parallel performance.

© 2008–2018 by the MIT 6.172 Lecturers 29

Quicksort Analysis

Example: Parallel quicksort

!"#"$% &'$()*$%+!',"-!$./0" 12/3"4 !$./0" 1,$56"7
8

$3 -2/3" 99 ,$56"7 ,/"*,:;
!$./0" 1< 9 <#,"$"$':-2/3"4 ,$56"7;=>>,*:=!/,$#22?
%$2+0!<#@:)*$%+!',"-2/3"4 <7;
)*$%+!',"-< A B4 ,$56"7;
%$2+0!?:%;

C

Analyze the sorting of 1,000,000 numbers.
!!! Guess the parallelism! !!!

© 2008–2018 by the MIT 6.172 Lecturers 30

Cilkscale Output

Measured
speedup

© 2008–2018 by the MIT 6.172 Lecturers 31

Cilkscale Output

SPAN LAW

© 2008–2018 by the MIT 6.172 Lecturers 32

Cilkscale Output

WORK LAW
(LINEAR

SPEEDUP)

© 2008–2018 by the MIT 6.172 Lecturers 33

Cilkscale Output

© 2008–2018 by the MIT 6.172 Lecturers 34

Theoretical Analysis

Example: Parallel quicksort

!"#"$% &'$()*$%+!',"-!$./0" 12/3"4 !$./0" 1,$56"7
8

$3 -2/3" 99 ,$56"7 ,/"*,:;
!$./0" 1< 9 <#,"$"$':-2/3"4 ,$56"7;=>>,*:=!/,$#22?
%$2+0!<#@:)*$%+!',"-2/3"4 <7;
)*$%+!',"-< A B4 ,$56"7;
%$2+0!?:%;

C

Expected work = !(n lg n) Parallelism = !(lg n) Expected span = !(n)

© 2008–2018 by the MIT 6.172 Lecturers 35

Interesting Practical* Algorithms

Algorithm Work Span Parallelism
Merge sort
Matrix multiplication
Strassen
LU-decomposition
Tableau construction
FFT
Breadth-first search

!(n lg n) !(lg3n) !(n/lg2n)
!(n3) !(lgn) !(n3/lgn)
!(nlg7) !(nlg7/lg2n) !(lg2n)
!(n3) !(n lg n) !(n2/lgn)

!(nlg3) !(n2-lg3) !(n2)
!(n lg n) !(lg2n) !(n/lg n)
!(E) !(" lg V) !(E/" lg V)

*Cilk on 1 processor competitive with the best C.

© 2008–2018 by the MIT 6.172 Lecturers 36

!"##$
%&'&(!
"#)*+)$#)*+,*-./01

© 2008–2018 by the MIT 6.172 Lecturers

SCHEDULING THEORY

37

Scheduling
! Cilk allows the

programmer to express
potential parallelism in
an application.

! The Cilk scheduler maps
strands onto processors
dynamically at runtime.

! Since the theory of
distributed schedulers is
complicated, we’ll
explore the ideas with a
centralized scheduler.

© 2008–2018 by the MIT 6.172 Lecturers

…

Memory I/O

$

P

$

P

$

P

$ $ $

Network

38

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all
its predecessors have executed.

© 2008–2018 by the MIT 6.172 Lecturers 39

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all
its predecessors have executed.

Complete step
! ! P strands ready.
! Run any P.

© 2008–2018 by the MIT 6.172 Lecturers

P = 3

40

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all
its predecessors have executed.

Complete step
! ! P strands ready.
! Run any P.

Incomplete step
! < P strands ready.
! Run all of them.

© 2008–2018 by the MIT 6.172 Lecturers

P = 3

41

Analysis of Greedy

Theorem [G68, B75, EZL89]. Any greedy scheduler
achieves

TP ! T1/P + T".

Proof.
complete steps ! T1/P,

since each complete step
performs P work.

incomplete steps ! T",
since each incomplete step
reduces the span of the
unexecuted dag by 1. $

© 2008–2018 by the MIT 6.172 Lecturers 42

Optimality of Greedy

Corollary. Any greedy scheduler achieves within a
factor of 2 of optimal.

Proof. Let TP* be the execution time produced by
the optimal scheduler. Since TP* ≥ max{T1/P, T∞}
by the WORK and SPAN LAWS, we have

TP ≤ T1/P + T∞
≤ 2·max{T1/P, T∞}
≤ 2TP* . ■

© 2008–2018 by the MIT 6.172 Lecturers 43

Linear Speedup

Corollary. Any greedy scheduler achieves near-
perfect linear speedup whenever T1/T∞ ≫ P.

Proof. Since T1/T∞ ≫ P is equivalent to
T∞ ≪ T1/P, the Greedy Scheduling Theorem
gives us

TP ≤ T1/P + T∞
≈ T1/P .

Thus, the speedup is T1/TP ≈ P. ■

Definition. The quantity T1/(PT∞) is called the
parallel slackness.

© 2008–2018 by the MIT 6.172 Lecturers 44

Cilk Performance

● Cilk’s work-stealing scheduler achieves
■ TP = T1/P + O(T∞) expected time (provably);
■ TP ≈ T1/P + T∞ time (empirically).

● Near-perfect linear speedup as long as
P ≪ T1/T∞ .

● Instrumentation in Cilkscale allows you to
measure T1 and T∞ .

© 2008–2018 by the MIT 6.172 Lecturers 45

!"##$
%&'&(!
"#)*+)$#)*+,*-./01

© 2008–2018 by the MIT 6.172 Lecturers

THE CILK RUNTIME SYSTEM

46

Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

P

spawn spawn
call
call
call

P

spawn spawn
call

P

Call!

spawn spawn spawn
call

spawn spawn
call

spawn spawn
call

P P

© 2008–2018 by the MIT 6.172 Lecturers 47

Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

P

spawn spawn
call
call
call

spawn

P

spawn spawn
call

spawn spawn

P

Spawn!

spawn spawn spawn
call

spawn spawn
call

spawn spawn
call

P P

© 2008–2018 by the MIT 6.172 Lecturers 48

Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

P

spawn spawn
call
call
call

spawn spawn
spawn

P

spawn
spawn spawn

P P

spawn
call

spawn spawn
call
call

spawn spawn
call

spawn

spawn
call

spawn spawn

Spawn!

P

Spawn!

P

spawn spawn

Call!

© 2008–2018 by the MIT 6.172 Lecturers 49

Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

spawn

P

spawn spawn
call
call
call

spawn

P

spawn spawn

P

spawn
call

spawn spawn
call
call

spawn
spawn

P

call call
callcallcallcallReturn!

spawn
call

spawn spawn
call

spawn

P

© 2008–2018 by the MIT 6.172 Lecturers 50

Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

spawn

P

spawn spawn
call
call
call

spawn

P

spawn spawn

P

spawn
call

spawn spawn
call
call

spawn
spawn

P

call call
callcallcallcallReturn!

spawn spawn
call

spawn

P

© 2008–2018 by the MIT 6.172 Lecturers 51

Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

P

spawn spawn
call
call
call

spawn

P

spawn

P

spawn
call

spawn spawn
call
call

spawn
spawn

P

call call
callcallSteal!

spawn spawn
call

spawn

P

When a worker runs out of work, it steals
from the top of a random victim’s deque.

© 2008–2018 by the MIT 6.172 Lecturers 52

Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

P

spawn spawn
call
call
call

spawn

P

spawn

P

spawn
call

spawn spawn
call
call

spawn
spawn

P

call call
callcallSteal!

spawn spawn
call

spawn

P

When a worker runs out of work, it steals
from the top of a random victim’s deque.

© 2008–2018 by the MIT 6.172 Lecturers 53

Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

spawn spawn
call
call
call

spawn

spawn spawn
call

spawn spawn
call
call

spawn spawn
call

spawn
spawn

spawn

P P P P

When a worker runs out of work, it steals
from the top of a random victim’s deque.

© 2008–2018 by the MIT 6.172 Lecturers 54

Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

P

spawn spawn
call
call
call

spawn

P

spawn

P

spawn
call

spawn spawn
call
call

spawn
spawn

P

call call
callcallcallcallSpawn!

spawn
spawn spawn

call
spawn

P

When a worker runs out of work, it steals
from the top of a random victim’s deque.

© 2008–2018 by the MIT 6.172 Lecturers 55

Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

spawn spawn
call
call
call

spawn

spawn spawn
call

spawn spawn
call
call

spawn spawn
call

spawn
spawn

spawn
spawn

P P P P

When a worker runs out of work, it steals
from the top of a random victim’s deque.

© 2008–2018 by the MIT 6.172 Lecturers 56

Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

spawn spawn
call
call
call

spawn

spawn spawn
call

spawn spawn
call
call

spawn spawn
call

spawn
spawn

spawn
spawn

Theorem [BL94]: With sufficient parallelism,

P P P P

workers steal infrequently ! linear speed-up.
© 2008–2018 by the MIT 6.172 Lecturers 57

Work-Stealing Bounds

Theorem [BL94]. The Cilk work-stealing
scheduler achieves expected running time

TP ≈ T1/P + O(T∞)
on P processors.

Pseudoproof. A processor is either working or
stealing. The total time all processors spend
working is T1. Each steal has a 1/P chance of
reducing the span by 1. Thus, the expected cost
of all steals is O(PT∞). Since there are P
processors, the expected time is

(T1 + O(PT∞))/P = T1/P + O(T∞) . ■

© 2008–2018 by the MIT 6.172 Lecturers 58

B

A

C

E

A A

B

A

C

A

C

D

A

C

E

A B C D E

Cilk’s cactus stack supports
multiple views in parallel.

Cactus Stack
Cilk supports C’s rule for pointers: A pointer to stack
space can be passed from parent to child, but not from
child to parent.

Views of stack

© 2008–2018 by the MIT 6.172 Lecturers 59

D

Bound on Stack Space

Theorem. Let S1 be the stack space required by a serial
execution of a Cilk program. Then the stack space
required by a P-processor execution is at most SP ! PS1.

Proof (by induction).
The work-stealing
algorithm maintains the
busy-leaves property:
Every extant leaf
activation frame has a
worker executing it. "

P

P

P

S1

P = 3

© 2008–2018 by the MIT 6.172 Lecturers 60

Summary

∙ Determinacy races are often bugs, and they can
be detected using Cilksan

∙ Cilkscale can analyze the work, span, and
parallelism of a computation

∙ A greedy scheduler is within a factor of 2 of the
optimal scheduler

∙ Cilk uses a work-stealing scheduler with strong
theoretical bounds on its running time

© 2008–2018 by the MIT 6.172 Lecturers 61

MIT OpenCourseWare
https://ocw.mit.edu

6.172 Performance Engineering of Software Systems
Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

62

ocw.mit.edu
ocw.mit.edu/terms

