
 
    

            

                

                 
         

               
             

               
                
               

 

 

Performance Engineering of Software Systems 
Massachusetts Institute of Technology 

6.172 
Practice Quiz 1 

Prof. Charles E. Leiserson and Prof. Julian Shun 

Practice Quiz 1 

Name: 

Instructions 

• DO NOT open this quiz booklet until you are instructed to do so.

• This quiz booklet contains 14 pages, including this one. You have 80 minutes to earn 80
points.

• This quiz is closed book, but you may use one handwritten, double-sided 8 1/200 × 1100 crib
sheet and the Master Method card handed out in lecture.

• When the quiz begins, please write your name on this coversheet, and write your name
on the top of each page, since the pages may be separated for grading.

• Some of the questions are true/false, and some are multiple choice. You need not explain
these answers unless you wish to receive partial credit if your answer is wrong. For these
kinds of questions, incorrect answers will be penalized, so do not guess unless you are
reasonably sure.

• Good luck!

Number Question Parts Points Score Grader 

0 Name on Every Page 14 2 

1 True or False 8 16 

2 Bit Tricks for the Queens Problem 5 13 

3 Parallel PageRank 3 9 

4 Bitonic Sort 6 18 

5 Heap Allocation 3 13 

6 Compilers & Assembly 2 9 

Total 80 
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1 True or False (8 parts, 16 points) 

Incorrect answers will be penalized, so do not guess unless you are reasonably sure. You need 
not justify your answer unless you want to leave open the possibility of receiving partial credit if 
your answer is wrong. 

1.1 

Packing is an optimization that reduces data movement but may increase computation. 

True False 

1.2 

There can never be a true-, anti- or output-data dependence between the following two lines of 
code: � 

movl %eax , (%esi) 
movl (%edi), %ecx � � 

True False 

1.3 

The time command can more readily diagnose kernel-mode performance variations (e.g., page 
zeroing) than clock_gettime(). 

True False 

1.4 

Using taskset for a serial program diminishes performance variations caused by NUMA (nonuni-
form memory access). 

True False 
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1.5 

6.172 Practice Quiz 1 Name 

When using reference counting for garbage collection, cyclic data structures are never garbage 
collected. 

True False 

1.6 

In the free-list heap-allocation algorithm, allocating to the least-full page maximizes the proba-
bility that two random accesses hit the same page. 

True False 

1.7 

Memory-allocator performance is more important when requesting a large amount of memory 
than when requesting a small amount. 

True False 

1.8 

Eliminating common subexpressions generally improves the performance of code unless it causes 
too much register pressure. 

True False 
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2 Bit Tricks for the Queens Problem (5 parts, 13 points) 

Recall the Queens Problem from lecture: Place n queens on an n × n chessboard such that no two 
queens can attack each other, i.e., only one queen in placed each row, column, or diagonal: 

We saw in lecture that this problem could be solved by a backtracking search that marches up 
and down the rows of the chessboard using bit tricks to represent columns and diagonals. In fact, 
the problem can be solved by an algorithm even more simple than the one Professor Leiserson 
presented in class. 

The function queens() performs the backtrack search, returning the number of solutions to the 
queens problem. The four arguments to the function are (1) a bit mask mask representing the 
width of the board as n columns, (2) a bit mask down representing which columns contain queens, 
(3) a bit mask left representing which left-going diagonals ending on the current row contain
queens, and (4) a bit mask right representing which right-going diagnoals ending on the current
row contain queens.

The queens() function is called from main() as follows: � 
printf (" The %d -queens problem has %d solutions .\n", 

n, 
queens ((1 << n) - 1, 0, 0, 0)); � � 

The next page shows code for queens() with 5 blanks labeled with letters, as well as a collection 
of 20 expressions beneath. 
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� 
int32_t queens ( uint32_t mask , 

uint32_t down , 

uint32_t left , 

uint32_t right ) { 

int32_t count = 0; 

uint32_t possible , place ; 

if ( down == (A) ) return 1; 

for ( possible = ˜( down | left | right ) & mask ; 

possible != (B) ; 

possible &= ˜ place ) { 

place = (C) ; 

count += queens ( mask , 

down | place , 

(D) , 

(E) ); 

} 

return count ; 

�} � 

For each blank in the code, write its label next to the expression that best fits. (Hint: Some blanks 
can take more than one expression, but only one is “best.”) 

0 place 

-1 -place

down ˜place 

left possible 

left << 1 possible & (-possible) 

(left|place) << 1 -possible

((left|place) << 1) & mask right 

mask right >> 1 

mask + 1 (right|place) >> 1 

˜mask ((right|place) >> 1) & mask 
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3 Parallel PageRank (3 parts, 9 points) 

In the following code, the variables contribution and rank are arrays of doubles, and in_degree 
and out_degree are arrays of integers. neighbor is a two dimensional array that stores the edges. 
neighbor[i][j] is the jth neighbor of the ith node. � 

1 void pagerank(double * rank , double * contribution , 
2 int ** neighbor , int * in_degree , 
3 int * out_degree , int num_vertices) { 
4 for (size_t iter = 0; iter < 10; iter ++) { 
5 cilk_for (size_t i = 0; i < num_vertices; i++){ 

6 for (int j = 0; j < in_degree[i]; j++){ 
7 rank[i] += contribution[neighbor[i][j]]; 
8 } 
9 } 

10 for (size_t i = 0; i < num_vertices; i++){ 
11 contribution[i] = rank[i]/ out_degree[i]; 
12 rank[i] = 0.0; 
13 } 
14 } 
15 �} � 

For each of the following code modifications designed to improve performance, circle the appro-
priate option to specify whether it is safe to make the indicated change, whether it is safe if a 
reducer is used, or whether it is unsafe. (Note: “safe” means that the output must be exactly the same 
as for the original code.) 

3.1 

Replace the for in line 4 with cilk_for. 

Safe Safe with reducer Unsafe 

3.2 

Replace the for in line 6 with cilk_for. 

Safe Safe with reducer Unsafe 
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3.3 

Replace the for in line 10 with cilk_for. 

Safe Safe with reducer Unsafe 
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4 Bitonic Sort (6 parts, 18 points) 

Consider the following multithreaded implementation of bitonic sort, a sorting algorithm based 
on bitonic sequences, which are sequences that can be cyclically shifted to be nonincreasing and 
then nondecreasing. Fortunately, for this problem you must understand neither bitonic sequences 
nor how the algorithm works. You must only understand its parallelism structure. � 

1 // Swap a[i] and a[j] if they are out of order , assuming that 
2 // i < j and the boolean ascending indicates whether the 
3 // sequence should be ascending (true) or descending (false) 
4 void bitonic_swap(int *array , size_t i, size_t j, bool ascending) { 
5 if ((array[i] > array[j]) == ascending) { 
6 int temp = array[i]; 
7 array[i] = array[j]; 
8 array[j] = temp; 
9 } 

10 } 
11 
12 // Sort the elements in the subarray a[lo, .., hi -1] into 
13 // ascending/descending order , assuming that the subarray forms 
14 // a bitonic sequence of power -of -2 length. 
15 void bitonic_merge(int *a, size_t lo, size_t hi, bool ascending) { 
16 if (lo >= hi - 1) return; 
17 
18 size_t len = (hi - lo) / 2; 
19 size_t mid = lo + len; 
20 cilk_for (size_t i = lo; i < mid; i++) { 
21 bitonic_swap(a, i, i + len , ascending); 
22 } 
23 
24 cilk_spawn bitonic_merge(a, lo, mid , ascending); 
25 bitonic_merge(a, mid , hi, ascending); 
26 cilk_sync; 
27 } 
28 
29 // Sort the elements in a[lo, .., hi -1] in ascending/descending order 
30 // assuming that the length of the subarray is a power of 2. 
31 void bitonic_sort(int *a, size_t lo, size_t hi, bool ascending) { 
32 if (lo >= hi - 1) return; 
33 
34 size_t mid = (hi + lo) / 2; 
35 cilk_spawn bitonic_sort(a, lo, mid , true); 
36 bitonic_sort(a, mid , hi, false); 
37 cilk_sync; 
38 
39 bitonic_merge(a, lo, hi, ascending); 
40 �} � 
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For the following questions, let n = hi − lo, and assume that n is a power of 2. 

Give a recurrence for the work M1(n) of bitonic_merge(), solve the recurrence, and express 
M1(n) in simple terms. 

4.2 

Give a recurrence for the span M∞(n) of bitonic_merge(), solve the recurrence, and express 
M∞(n) in simple terms. 

4.3 

Give the parallelism of bitonic_merge() in simple terms. 
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4.4 
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Give a recurrence for the work S1(n) of bitonic_sort() in terms of M1(n) and M∞(n), solve the 
recurrence, and express S1(n) in simple terms. 

4.5 

Give a recurrence for the span S∞(n) of bitonic_sort() in terms of M1(n) and M∞(n), solve the 
recurrence, and express S∞(n) in simple terms. 

4.6 

Give the parallelism of bitonic_sort() in simple terms. 
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5 Heap Allocation (3 parts, 13 points) 

A certain program needs to allocate memory chunks that have alternating sizes of 60 bytes and 
120 bytes. In other words, the program will allocate a chunk of 60 bytes, followed by 120 bytes, 
followed by 60 bytes, and so on. We shall consider two schemes for heap allocation. 

Scheme F is a fixed-size allocator that uses a free-list of 120-byte blocks. Scheme V is a variable-
sized allocator that uses binned free lists with blocks that are exact powers of 2. 

5.1 

What are likely the advantages of Scheme V over Scheme F? (Circle all that apply.) 

A Faster allocation. 

B Less internal fragmentation. 

C Less external fragmentation. 

D Fewer TLB (translation lookaside buffer) misses. 

E Less false sharing when parallelized. 

5.2 

Ben Bitdiddle pushes an update to the program. Now, after 100,000 allocations of blocks with 
alternating sizes of 60 and 120 bytes (as described above), the program frees all blocks of size 60 
bytes and proceeds to allocate 100,000 more blocks of size 120 bytes. After the update, which 
scheme would you prefer to use and why? (Circle all that apply.) 

A Scheme V, because freeing blocks is faster with a variable-sized allocator. 

B Scheme F, because there is less external fragmentation. 

C Scheme F, because there is less internal fragmentation. 

D Scheme F, because there is better space utilization and, therefore, fewer TLB (translation 
lookaside buffer) misses. 

E Scheme V, because there is better space utilization and, therefore, fewer TLB (translation 
lookaside buffer) misses. 
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5.3 

Lem E. Tweakit sends you a mystery Cilk program, in which each allocated object is labeled with 
the worker thread that created it (its owner), and freed objects are returned to the owner’s heap. 
What is the bound on blowup B for this mystery Cilk program? (Hint: Blowup is the maximum 
of allocated storage across all workers divided by the maximum of allocated storage in the serial 
execution.) 

A B = 1. 

B B = K for some constant K > 1. 

C B ≤ P, where P = # workers. 

D P < B ≤ KP for some constant K > 1. 

E B > KP for any constant K > 1. 
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6 Compilers & Assembly (2 parts, 9 points) 

Consider the four code snippets below. Assume all four examples are compiled with Tapir/Clang 
on a 64-bit AVX2-enabled Linux machine, using the flags -Rpass=loop-vectorize -mavx2 (the 
same conditions you used to complete Homework 3). 

A � 
void func_A ( int32_t * restrict X , int32_t 

for ( int i = 0; i < 1000*1000; i ++) { 
X[i] = X[i] + Y[i ]; 

} 

�} 

* restrict Y) {

� 

B 

void func_B ( int32_t * restrict X , int32_t 
for ( int i = 0; i < 1000*1000; i +=4) { 

X[i] = X[i] + Y[i ]; 
} 

�} 

* restrict Y) {
� 

� 

C 

void func_C ( int32_t * restrict X , int32_t 
for ( int i = 0; i < 1000*1000; i ++) { 

X[i] = X[i] / Y[i ]; 
} 

�} 

* restrict Y) {
� 

� 

D � 
void func_D ( int32_t * restrict X , int32_t * restrict Y) { 

for ( int i = 0; i < 1000*1000 - 1; i ++) { 
X[i] = X[i +1] + Y[i ]; 

} 

�} � 



14 6.172 Practice Quiz 1 Name 

6.1 

For which of the functions is the loop likely to be vectorized without further compiler directives? 
(Circle all that apply.) 

A func_A 

B func_B 

C func_C 

D func_D 

6.2 

The following text is the assembly code for one of the loops: � 
movq %rdi , -8(% rbp ) # X 
movq %rsi , -16(% rbp ) # Y 
movl $0 , -20(% rbp ) 

. LBB0_1 : 
cmpl $1000000 , -20(% rbp ) 
jge . LBB0_4 
movslq -20(% rbp ), % rax 
movq -8(% rbp ) , % rcx
movl (% rcx ,% rax ,4) , % edx
movslq -20(% rbp ), % rax 
movq -16(% rbp ) , % rcx
addl (% rcx ,% rax ,4) , % edx
movslq -20(% rbp ), % rax 
movq -8(% rbp ) , % rcx
movl %edx , (% rcx ,% rax ,4)
movl -20(% rbp ) , % eax
addl $4 , % eax
movl %eax , -20(% rbp )
jmp . LBB0_1

. LBB0_4 : � � 

Circle the letter for the function containing the loop corresponding to the assembly code. 

A func_A 

B func_B 

C func_C 

D func_D 



Intel x86 Assembly Language Cheat Sheet 
Instruction Effect Example 

Data movement 
mov src, dest Copy src to dest mov $10,%eax 

Arithmetic  
add src, dest Dest = dest + src add $10, %esi 
mul reg edx:eax = eax * reg (colon means the 

result spans across two registers) 
mul %esi 

div reg 
idiv reg 

edx = edx:eax mod reg 
eax = edx:eax / reg 

div %edi 

inc dest Increment destination Inc %eax 
dec dest Decrement destination dec (%esi) 
sbb arg1, arg2 If CF = 1, (this is set by cmp instruction; 

refer cmp) 
   arg2 = arg2 – (arg1 + 1) 
else 
   arg2 = arg2 – arg1 

sbb %eax, %ebx 

Function Calls 
call label Push eip, transfer control call _fib 
ret Pop eip and return ret 
push item Push item (constant or register) to stack pushl $32 

pushl %eax 
pop [reg] Pop item from stack; optionally store to 

register 
pop %eax 
popl 

Bitwise Operations 
and src,dest Dest = src & dest and %ebx, %eax 
or src, dest Dest = src | dest orl (0x2000), %eax 
xor src, dest Dest = src ^ dest xor $0xffffff, %eax 
shl count, dest Dest = dest << count shl $2, %eax 
shr count, dest Dest = dest >> count shr $4, (%eax) 
sal count, dest Same as shl, shifted bits will be the sign 

bit 
Conditionals and jumps 
cmp arg1, arg2 If arg1 > arg2 sets 

   CF=1 (carry flag =1) 
This compares arg1 and arg2; you can 
use any conditionals jumps below to act 
upon the result of this comparison 

cmp $0, %eax 

test reg,imm/reg Bitwise and of register and 
constant/register; the next jump command 
uses the result of this; consider this 
essentially as same as compare 

test %rax, %rcx 

je label Jump to label if arg2 = arg1 je endloop 
jne label Jump to label if arg2 != arg1 jne loopstart 
jg label / ja label Jump to label if arg2 > arg1 jg exit / ja exit 
jge label Jump to label if arg2 >= arg1 jge format_disk 
jl label Jump to label if arg2 < arg1 jl error 
jle label Jump to label if arg2 <= arg1 jle finish 
jz label Jump to label if bits were not set jz looparound 
jnz label Jump to label if bits were set jnz error 
jump label Unconditional jump jmp exit 
Miscellaneous 
nop No-op nop 
lea addr, dest Move the address calculated to the dest lea 23(%eax, %ecx,8),%eax 
cqto %rdx:%rax← sign-extend of %rax. cqto 

suffixes b=byte(8), w=word(16), l=long(32), q=quad(64) 
base indexed scale displacement 172(%rdi, %rdx,8) = %rdi + 8 * %rdx + 172 
Note that not both src and dest can be memory operands at the same time. 
register - %eax    fixed address – (0x1000) 
constant - $10    dynamic address – (%rsi) 
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