

Performance Engineering of Software Systems
Massachusetts Institute of Technology 6.172
Prof. Charles E. Leiserson and Prof. Julian Shun Practice Quiz 2

Practice Quiz 2 Solutions

Name:

Instructions

• DO NOT open this quiz booklet until you are instructed to do so.

• This quiz booklet contains 17 pages, including this one. You have 80 minutes to earn 80
points.

• This quiz is closed book, but you may use one handwritten, double-sided 8 1/200 × 1100 crib
sheet and the Master Method card handed out in lecture.

• When the quiz begins, please write your name on this coversheet, and write your name on
the top of each page, since the pages may be separated for grading.

• Some of the questions are true/false, and some are multiple choice. You need not explain
these answers unless you wish to receive partial credit if your answer is wrong. For these
kinds of questions, since incorrect answers will be penalized, do not guess unless you are
reasonably sure.

• Good luck!

Number Question Parts Points Score Grader

0 Name on Every Page 17 1

1 True or False 9 18

2 Heap space for Cilk programs 3 7

3 Concurrent free lists 2 8

4 Parallel Strassen 5 15

5 Space usage for Strassen 6 18

6 Cache-oblivious Strassen 3 13

Total 80

1

2 6.172 Practice Quiz 2 Name

1 True or false (9 parts, 18 points)

Incorrect answers will be penalized, so do not guess unless you are reasonably sure. You need
not justify your answer, unless you want to leave open the possibility of receiving partial credit
if your answer is wrong. Comments will have no impact on a correct answer.

1.1

There are generally fewer conflict misses in a set-associative cache than a direct-mapped cache.

True False

Answer: True

1.2

If there is a TLB miss, then the corresponding cache line is not already in cache.

True False

Answer: False

1.3

When dealing with multiple pages, a new block should be allocated from the free list for the
emptiest page to incur the fewest TLB misses.

True False

Answer: False

1.4

It is generally more important for a memory allocator to quickly allocate small blocks than to
quickly allocate large blocks.

True False

Answer: True

3 6.172 Practice Quiz 2 Name

1.5

Streaming writes allow for higher memory bandwidth utilization by bypassing cache with the
additional cost of higher latency.

True False

Answer: True

1.6

On x86, sequentially consistent behavior can always be achieved through the use of memory
fences.

True False

Answer: True

1.7

If a program that runs on 2 threads protects its critical sections using Peterson’s algorithm, then
it is free of determinacy races.

True False

Answer: False

1.8

If a program that runs on 2 threads protects its critical sections using Peterson’s algorithm, then
it is free of data races.

True False

Answer: True

1.9

Ignoring the effects of true and false sharing, on x86, a compare-and-swap operation is just as
fast as an equivalent comparison and assignment.

True False

Answer: False

 4

2.2

6.172 Practice Quiz 2 Name

2 Heap space for Cilk programs (3 parts, 7 points)

Consider the following parallel Cilk code. �
1 void foo(int depth , size_t X) {
2 if (depth < 1) return;
3 cilk_spawn foo(depth -1, X);
4 void *ptr = malloc(X);
5 cilk_sync;
6 free(ptr);
7 �} �

Assume that the stack is large enough such that for all inputs of depth the code does not overflow
the stack. Furthermore, assume that foo is run using an optimal allocator that achieves perfect
utilization.

2.1

Suppose that foo is executed using just 1 worker. Argue that the space needed to satisfy the calls
to malloc from foo is X.

Answer: X

Now suppose that foo is executed using 2 workers. In terms of depth and X, what is the maximum
amount of space needed to satisfy the calls to malloc from foo? (Hint: Consider an execution of
foo in which one worker steals line 4 from the other worker in every invocation of foo.)

Answer: depth · X

 5

2.3

6.172 Practice Quiz 2 Name

In lecture, we saw a theorem stating that a P-worker execution of any Cilk program uses at most
P times the space used in a serial execution of that Cilk program. Why does the theorem not
apply to foo, or does it?

Answer: The theorem applies to stack allocations, not heap allocations

 6 6.172 Practice Quiz 2 Name

3 Concurrent free lists (2 parts, 8 points)

Ben Bitdiddle is parallelizing a program that uses a free list to handle the allocation of objects of
a fixed size X. Ben’s serial code uses a global free-list data structure of type FreeList_t, defined
as follows: �
8 typedef struct Node_t {
9 /* A */

10 struct Node_t *next;
11 } Node_t;
12
13 typedef struct {
14 /* B */
15 Node_t *head;
16 } FreeList_t;
17
18 void push(FreeList_t *fl, Node_t *node) {
19 /* C */
20 node ->next = fl ->head;
21 /* D */
22 fl ->head = node;
23 /* E */
24 }
25
26 Node_t *pop(FreeList_t *fl) {
27 /* F */
28 Node_t *node = fl ->head;
29 /* G */
30 if (NULL != node) {
31 /* H */
32 fl ->head = node ->next;
33 /* I */
34 }
35 /* J */
36 return node;
37 �} �

3.1

3.2

6.172 Practice Quiz 2 Name 7

Ben considers parallelizing his free list by implementing thread-local free lists. Each thread
would only push or pop storage from its local free list. If the thread’s local free list is empty, then
the thread simply calls the system’s malloc.

Describe a performance problem that Ben might see with thread-local free lists that can cause
Ben’s parallel program to use much more space than his original serial program.

Answer: memory drift

Ben decides to modify his serial free-list code into a global free list, with push and pop oper-
ations synchronized using mutex locks. Ben wants to add as few instructions as possible to his
free-list code to implement a correct and efficient global free list. Ben’s free list code contains
convenient labels A through J at lines where Ben might insert a new statement.

Write an X in each table cell below where Ben should insert the statement in the corresponding
column at the line specified by the corresponding row. Each row should contain at most one X.

mutex_t L; lock(fl->L); unlock(fl->L); lock(node->L); unlock(node->L);
A
B
C
D
E
F
G
H
I
J

Answer: X’s at (B, mutex_t L;), (C, lock(fl->L)), (E, unlock(fl->L)), (F, lock(fl->L)), (J, unlock(fl->L)).

 8 6.172 Practice Quiz 2 Name

4 Parallel Strassen (5 parts, 15 points)

Recall the (cache-oblivious) divide-and-conquer matrix multiplication algorithm from lecture and
from Homework 8. Given two n × n matrices A and B, where n is a power of 2, the algorithm
computes the product C = A · B in Θ(n3) work as follows. First, the algorithm partitions the
matrices A, B, and C into four quadrants: � � � � � �

A1,1 A1,2 B1,1 B1,2 C1,1 C1,2 A = , B = , C =
A2,1 A2,2 B2,1 B2,2 C2,1 C2,2

The algorithm then computes the quadrants of C using eight recursive multiplications:

C1,1 = A1,1 · B1,1 + A1,2 · B2,1

C1,2 = A1,1 · B1,2 + A1,2 · B2,2

C2,1 = A2,1 · B1,1 + A2,2 · B2,1

C2,2 = A2,1 · B1,2 + A2,2 · B2,2 .

In 1969 Volker Strassen invented an asymptotically faster matrix-multiplication algorithm and
showed that the n3 matrix multiplication algorithm was not optimal. Strassen’s algorithm par-
titions the matrices into quadrants as before, but then recursively computes seven intermediate
matrix products: (Do not waste time verifying that these formulae are correct.)

M1 = (A1,1 + A2,2) · (B1,1 + B2,2)

M2 = (A2,1 + A2,2) · B1,1

M3 = A1,1 · (B1,2 − B2,2)

M4 = A2,2 · (B2,1 − B1,1)

M5 = (A1,1 + A1,2) · B2,2

M6 = (A2,1 − A1,1) · (B1,1 + B1,2)

M7 = (A1,2 − A2,2) · (B2,1 + B2,2) .

The quadrants of the C matrix can be computed in terms of M1, M2, . . . , M7 as follows:

C1,1 = M1 + M4 − M5 + M7

C1,2 = M3 + M5

C2,1 = M2 + M4

C2,2 = M1 − M2 + M3 + M6 .

The next page presents pseudocode for a parallel implementation of Strassen’s algorithm for
n × n matrices, where n is an even power of 2. Do not waste time trying to understand how the
code works. You only need to understand its parallel structure.

40

45

50

55

60

65

70

75

80

85

6.172 Practice Quiz 2 Name 9

 �
38 // Pseudocode for a parallel version of Strassen ’s algorithm to
39 // multiply two square matrices A , B. The matrices have side length n

// in each recursive call , where n is an even power of 2.
41 // Assume that A11 ... A22 , B11 ... B22 , C11 ... C22 are quadrants of A , B, C.
42 strassen (A , B , n) {
43 // Coarsened base case
44 if (n < BASE_CASE_SIZE) return base_case (A , B, n);

46 // Compute the quadrants A11 , A12 , etc . for A, B , and C.
47 // Create 8 temporary matrices of size n ̂ 2/4.
48 Temp [8];
49 for (int i = 0; i < 8; ++ i) Temp [i] = malloc (n * n / 4);

51 //////// Block 1
52 cilk_spawn { Temp [0] = A21 + A22 ;
53 Temp [1] = strassen (Temp [0] , B11 , n /2) }; // M2
54 cilk_spawn { Temp [2] = B12 - B22 ;

Temp [3] = strassen (A11 , Temp [2] , n /2) }; // M3
56 cilk_spawn { Temp [4] = B21 - B11 ;
57 Temp [5] = strassen (A22 , Temp [4] , n /2) }; // M4
58 Temp [6] = A11 + A12 ;
59 Temp [7] = strassen (Temp [6] , B22 , n /2) ; // M5

cilk_sync ; // End block 1
61
62 //////// Block 2
63 cilk_spawn { C11 = Temp [5] - Temp [7] }; // C11 = M4 - M5
64 cilk_spawn { C12 = Temp [3] + Temp [7] }; // C12 = M3 + M5

cilk_spawn { C21 = Temp [1] + Temp [5] }; // C21 = M2 + M4
66 C22 = Temp [3] - Temp [1]; // C22 = M3 - M2
67 cilk_sync ; // End block 2
68
69 //////// Block 3

cilk_spawn { Temp [0] = A11 + A22 ;
71 Temp [1] = B11 + B22 ;
72 Temp [2] = strassen (Temp [0] , Temp [1] , n /2) }; // M1
73 cilk_spawn { Temp [3] = A12 - A22 ;
74 Temp [4] = B21 + B22 ;

C11 += strassen (Temp [3] , Temp [4] , n /2) }; // C11 += M7
76 Temp [5] = A21 - A11 ;
77 Temp [6] = B11 + B12 ;
78 C22 += strassen (Temp [5] , Temp [6] , n /2) ; // C22 += M6
79 cilk_sync ; // End block 3

81 //////// Block 4
82 cilk_spawn { C11 += Temp [2] }; // C11 += M1
83 C22 += Temp [2]; // C22 += M1
84 cilk_sync ; // End block 4

86 for (int i = 0; i < 8; ++ i) free (Temp [i]) ;
87 return C;
88 �} �

 10

4.1

6.172 Practice Quiz 2 Name

We will first analyze the work and span of this Strassen code. Assume that this Strassen code
uses a routine for adding or subtracting two n × n matrices in Θ(n2) work and Θ(lgn) span, such
as in line 52.

Explain why the recurrence for the work T1(n) of the parallel Strassen code satisfies

T1(n) = 7T1(n/2) + Θ(n2). (1)

Answer: We have seven recursive multiplications of matrices of size n/2 × n/2. At each level
of the recursion, there are a constant number of matrix additions / subtractions to produce the
intermediate matrices to pass into the next recursive calls.

4.2

The solution to the work recurrence (1) is

T1(n) = Θ(na lgb n)

for some values a and b. Select the correct values for a and b from the choices below.

A a = 2, b = 0

B a = 2, b = 1

C a = lg7, b = 0

D a = lg7, b = 1

E a = 3, b = 0

F None of the above

Answer: C

 11

4.3

4.4

6.172 Practice Quiz 2 Name

The recurrence for the span T∞(n) of this parallel Strassen code is composed from the spans of
four blocks in the code: Block 1 (lines 51–60), Block 2 (lines 62–67), Block 3 (lines 69–79), and
Block 4 (lines 81–84). For each block, write an X in the table below to identify the span of that
block.

Θ(lgn) T∞(n/2) + Θ(lgn) 3T∞(n/2) + Θ(lgn) 4T∞(n/2) + Θ(lgn)
Block 1
Block 2
Block 3
Block 4

Answer: Block 1 has span T∞(n/2) + Θ(log2 n). Block 2 has span Θ(log2 n). Block 3 has span
T∞(n/2) + Θ(log2 n). Block 4 has span Θ(log2 n).

Describe how the spans of those four blocks compose to make the recurrence for the span of this
parallel Strassen code equal to

T∞(n) = 2T∞(n/2) + Θ(lgn). (2)

Answer: The spans of the four blocks sum to give T∞(n) = 2T∞(n/2) + Θ(log2 n).

 12 6.172 Practice Quiz 2 Name

4.5

The solution to the span recurrence (2) is

T∞(n) = Θ(na lgb n)

for some values a and b. Select the correct values for a and b from the choices below.

A a = 0, b = 1

C a = 1, b = 0

E a = 2, b = 0

G a = lg7, b = 0

I None of the above

B a = 0, b = 2

D a = 1, b = 1

F a = 2, b = 1

H a = lg7, b = 1

Answer: C

 13 6.172 Practice Quiz 2 Name

5 Space usage for Strassen (6 parts, 18 points)

This question studies the space usage during an execution of the parallel Strassen code described
in Question 4. As lines 48–49 in the pseudocode show, this parallel Strassen code uses Θ(n2)
temporary space per recursive call.

5.1

Describe why the total amount of temporary space S1(n) used by a 1-worker execution of this
parallel Strassen program satisfies the following recurrence:

S1(n) = S1(n/2) + Θ(n2). (3)

Answer: In a serial execution, at any point in time, the execution of parallel Strassen involves
just a single stack of frames. Each frame on the stack uses Θ(n2) space. Hence the recurrence is
as stated.

5.2

Solve the recurrence (3), and write your answer using Θ-notation.

Answer: The solution to the recurrence is Θ(n2).

 14 6.172 Practice Quiz 2 Name

Although the Cilk scheduler provides a weak bound on the space used by a P-worker execu-
tion of this parallel Strassen code, we can prove a stronger bound by considering the worst-case
recursion tree for this code. It turns out that this worst-case recursion tree for space usage is as
illustrated below:

…
4

Θ((n/2)2)

Θ((n/2k)2)Θ((n/2k)2) Θ((n/2k)2)…

4

Θ((n/2)2)Θ((n/2)2)

Θ(1) Θ(1) Θ(1)

…
P nodes

Level 0Θ(n2)

Level 1

Level k

…

This recursion tree recursively branches 4 ways until it reaches the first level k that contains P
nodes. Each worker then serially executes the computation under a distinct level-k node, which
the recursion tree models with 1-way branching after level k.

5.3

Why is the branching factor 4 for the top part of this recursion tree?

Answer: The code spawns off at most four recursive calls in parallel at any point during its
execution, i.e., either in block 1 or block 2. Therefore, the branching factor of the space overhead
is four because the space allocated is reused across all blocks.

5.4

Argue that the total space usage in the top part of the recursion tree, in all levels i ≤ k, is
Θ(n2 log4 P).

Answer: The height of the tree is k = log4P. Each level uses Θ(n2) space. The result follows from
the product of these terms.

 15

5.5

5.6

6.172 Practice Quiz 2 Name

Argue that the total space usage in the bottom part of the recursion tree, in all levels i > k, is
Θ(n2).

Answer: As shown in 5.2, the total space used at the lower levels of the recursion is Θ(n2).

What is the total worst-case space used by an execution of parallel Strassen? Express your answer
in Θ-notation.

Answer: The space usage below any particular node at level k is S1(n/2k) = Θ(n2/4k). Because
k = log4 P, this equation simplifies to Θ(n2/P). Because there are P nodes at level k, the total
space usage below level k is Θ(n2).

 16 6.172 Practice Quiz 2 Name

6 Cache-oblivious Strassen (3 parts, 13 points)

This question examines the cache-efficiency of Strassen’s algorithm for matrix multiplication. For
this question, we will consider a serial implementation of Strassen’s algorithm, such as the serial
elision of the parallel implementation described in Question 4. For this problem, assume an
ideal cache model (fully associative with an optimal or LRU replacement policy, as appropriate)
with cache size M and cache-line length B. Assume that the cache is tall (i.e. M = ω(B2)).
Furthermore, assume that Strassen’s algorithm is run using an optimal allocator that achieves
perfect utilization. Assume that the input matrix is stored in row-major order, and also assume
that the routine for adding or subtracting two m-by-m submatrices is Θ(m2/B).

The recurrence for the worst-case number Q(n) of cache misses incurred by Strassen’s algorithm
when multiplying two n × n matrices is given by (√

Θ(n2/B) if 0 ≤ n < c M for sufficiently small constant c ≤ 1;
Q(n) = (4)

7Q(n/2) + Θ(n2/B) otherwise.

6.1

Why is Q(n) = 7Q(n/2) + Θ(n2/B) for n sufficiently large?

Answer: We have seven recursive calls on matrices of size n/2. In addition, there are a constant
number of matrix additions and subtractions to construct the inputs for the recursive calls, so the
cache misses to create the inputs is Θ(n2/B).

6.2
√

Why is Q(n) = Θ(n2/B) for n < c M?

Answer: All the matrices used by the algorithm have Θ(n2) elements. When n is sufficiently
small that all these matrices fit into cache, we have n2 ≤ cM. The number of cache misses to
bring them all into cache is Θ(n2/B). Once in memory, the recursive nature of the program is
such that no more cache misses are incurred on any subproblems.

17

6.3

6.172 Practice Quiz 2 Name

Sketch the recursion tree for the recurrence for (4). Compute the height and the number of leaves
of the recursion tree, and label the internal nodes and leaves of the tree with the corresponding
number of cache misses incurred at them. Solve the recurrence, providing a tight asymptotic
bound in simple form.

Sketch of recursion tree for Q(n):

Height =

Number of leaves =

Misses per leaf =

Q(n) =

Answer: Height = lgn − lg(cM).
√ √

Number of leaves = 7lgn−lg(c M) = Θ(nlg7/ Mlg7
).

Misses per leaf = Θ(M/B).
lg7n Q(n) = Θ(BM(log7)/2−1).

MIT OpenCourseWare
https://ocw.mit.edu

6.172 Performance Engineering of Software Systems
Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

