
Team Nine Paper 
Introduction 

MASLab contest over IAP presents the participants a difficult problem to solve—
building an autonomous robot with vision to score points with balls. Even though the 
essence of the contest can be summarized into a one-liner, the complexity of the problem 
is on the other extreme. Much of the difficulty of the problem comes from the time and 
resource constraint. You only have four weeks to solve the problem at hand. Attending all 
the lectures and mock contests, participants realistically have only three weeks. Time is a 
big issue for this contest. This report will present solution that the team came up with 
after putting in roughly one thousand hours during IAP. Even though the result was not as 
expected, the Legend of Drunken Panda will continue. 

Overall Strategy 

The overall strategy of our robot dealt with essentially three different problems; how to 
allow our robot to navigate the unknown playing field and identify objects successfully, 
how to capture the red balls, and how to score in the goal area. The problem dealing with 
the navigation of the unknown playing field and identifying objects was by far the most 
complex and dealt with the integration of software, sensors, and structural design. The 
capture and scoring problems were ones which were mostly mechanical situations. At the 
beginning of the design process our team sat down and discussed a game plan to solve 
each of these problems. 

It was inherent from day one that we would be using our camera to deal with identifying 
objects. The obvious color differences between balls, walls and goals quickly gave us a 
method of identifying one object from another. However, there was still the issue of 
depth perception and navigation. We decided that a combination of IR sensors could be 
used to give our robot a strong sense of how far away it was from a wall. On top of this 
we decided that we would have our robot scan the field with it’s IR sensors to make a 
map. To navigate about the field we decided that we would use a combination of a gyro 
and quadraphase encoders to enable us to determine the changes in direction and 
distances traveled by the robot. To bring all of this information together in an efficient 
manner it was decided that our software structure should make use of a multi-threaded 
behavioral model control system. 

To solve the issue of capturing the red balls it was decided that a mechanism that could 
pick up the balls continuously. The hope was that this would cut down on the time spent 
capturing the ball. To accomplish this it was decided that a belt system would be used to 
raise the balls up a series of ramps and into a storage level. This belt would continuously 
run so that the robot simply had to run over the balls. 

To maximize our score, the balls were to be put through the field goal. To do this a ball 
shooter was designed. However, if the ball shooter mechanism proved to be incapable of 



providing the forces desired, then a chute would be used to allow the balls to roll through 
the mouse holes. 

Mechanical Design 

For our robot, we planned on integrating various mechanical modules to create an 
interesting robot. The idea behind creating mechanical modules is just like the idea of 
creating modules in our programming. Each could be independently modified, and the 
performance on a particular module could be tested before all the rest were un and 
running. 

Our first most interesting idea was to try and create a ball shooter like in a tennis ball 
launcher or like the spinners found in a Matchbox car set. To create this module, we first 
realized that we would need a high speed motor in order to spin the wheels fast enough to 
accelerate a ball between them. The difficulty in creating this module is that it was hard 
to prototype. With our other modules, we could make a quick inefficient models of what 
we wanted by using the drill press and modifying some pieces of hardboard, but with the 
shooter, inefficiencies would quickly stall the high speed motor we needed to shoot a ball. 
Once we acquired a motor and some wheels to use for the shooter, we carefully designed 
all the gear spacing and the structure that we would need to act as bearings for the shafts. 
The whole design went through two iterations before we had shooter wheels that had 
almost frictionless turning and a properly coupled motor. Once the module was 
completed we gauged it at being able to shoot at ball a little over 10 ft/s. Sadly, since we 
finished this module only four days before contest, we didn’t really have the time to 
mount it properly to our robot and use it in the contest. 

Our second most critical module was a roller assembly that used a belt to pull balls up to 
the top of our robot. This module, unlike the shooter, was easy to prototype. Once we had 
our basic design, we made rollers on a lathe to dramatically better our rolling, and then 
we made a housing out of sheet metal by drilling some holes our using a mill. The roller 
assembly encountered the classic problems that come with all belt assemblies: drift and a 
lack of belt tension. Due to a lack of materials, we couldn’t make the belt out of a nice 
rubbery material, so instead we used some backward duct tape stuck to itself. The choice 
of material was not ideal because the tape had some viscoelastic effects, but as a tradeoff, 
the stickiness proved useful in gabbing balls and carrying them up the belt. On 
competition day the belt itself ran into a completely new set of difficulties and ended up 
sticking to itself in an unexpected way. 

Software Architecture 

Our original plan for the software was to implement a multithreaded behavioral model 
control system, where sensor data would be fed into a set of behavior modules, which 
would then output information and instructions to each other and to actuator modules. As 
the code evolved, however, the structure of the modules came to resemble the classical 
sense-plan-act model, as illustrated below. 



 

Each module was a self-contained Java thread responsible for a single behavior. To 
communicate with other modules, we designed a thread-safe Edge class for storing 
arbitrary Data Packet objects; each module had a list of incoming and outgoing edges, 
from which they could read or post information. For example, the Sensors module had no 
incoming edges, but had outgoing edges to nearly all of the other modules. Every 100ms, 
the Sensors module would poll the robots sensors and write a new SensorDataPacket to 
each of its outgoing edges. Other modules could then check if their incoming sensor edge 
had changed, and could read the information and process it, likely resulting in the posting 
of some new information. 

This software model had the advantage of being very easy to test and to extend. It was 
easy to test because each module could be individually tested using JUnit software by 
simply supplying false inputs to the module and then reading its outputs. To extend the 
software, you just needed to wire the new module into the system as if adding a 
component into an electrical circuit. An example of the flexibility of this system was our 
implementation of our Exploration and Play rounds. In the Exploration round, we simply 
removed the GetBall and Score modules (and their corresponding edges) from the 
system; this way, our robot would still Avoid, Explore, and Map, but it would ignore 
balls and goals. Then, during the Play round, we added these modules back in. 

The only real difficulty with this software model was the heavy threading it required. Our 
team had limited experience with Java threading, causing us to write code which was 



likely not completely thread-safe. As a result, we sometimes found we could “fix 
problems” by polling the sensors less often (to reduce the likelihood of race conditions), 
and our log file often had statements out of order, making debugging more difficult. 

The other notable feature of our software was our exploration and mapping code. To 
explore the map efficiently, we would have our robot execute “exploration circles,” 
where the robot would spin 360 degrees while recording data from the front-facing IR 
sensors and camera. This data could then be filtered to produce a local occupancy grid 
around the robot. Using a heuristic, we could then determine which direction the robot 
should travel in next, favoring directions which seemed to be more open and which were 
farther away from previously visited points. We also stored this local occupancy grid into 
a global grid, allowing our robot to build a map of the environment. This map was 
combined with feature information from the camera, enabling the robot to request the 
shortest path (determined using A*) to the nearest goal or ball. 

Vision Software 

Simplicity and speed is the design motto for the vision portion of the Panda. The main 
class files are: PandaVisionModule and various Feature classes (Red ball, barcode, and 
goal). PVM is responsible for capturing images from the camera, locating the 

features, and estimating distance and bearing. All these information will be posted to 
other interested modules such as Score and GetBall in the form of VisionDataPacket. 

First step in improving speed is using the underlying data buffer of the images. Calling 
image.getRaster().getDataBuffer().getData() returns an integer array that is compact and 
fast to access. Traversing the array is really fast as compared to using the getRGB method 
of BuffereImage. The final version of the PandaVisionModule can process an image of 
160x120 pixels in 30 milliseconds. With this kind of speed, the software can either run 
image analysis frequently or save computation time for other parts such as threading. 

Feature identification relies on color identification. Various thresholds are determined to 
distinguish red, green, black, and so forth. Then, it is just a matter of traversing through 
the array to determine the region of interest. PandaVisionModule uses the expanding 
rectangle approach as resented in vision lecture to identify interested color patches. That 
enables the Panda to see multiple balls, barcodes, etc. Estimation of bearing and distance 
is solved by fitting exponential graphs to data collected from the camera. Blue line 
filtering was also implemented using the same tricks in feature identification. 

The final version of the PandaVisionModule excelled in redball identification and blue 
line filtering. However, goal and barcode identification weren’t solved due to time 
constraint. Though they could be properly identified in the analysis all the time, 
extracting useful information from them wasn’t perfect. Those information were right or 
left goal post and reading from an incomplete barcode. 



Time worked against the team throughout MASLab. It proved impossible to do design 
iterations as taught by the institute. The team did all it could to finish the robot, but much 
of it was still untested on contest day. All in all it was a good character-building 
experience. The hours were long and there was little support from the staff besides 
replacing defected parts. If anyone is looking for a good hacking activity for IAP, 
MASLab is it. 

Suggestions 

For the future participants—you can forget about those good design iteration principles 
you learned from engineering classes because you don’t have time. This contest isn’t 
about building a perfect robot by the end of IAP. It is about presenting something that 
works. It might not be perfect, but at least it is functional. That goes for both hardware 
and software. Hardware needs to be done a week before the contest so the software can 
be tested to work out the kinks. You should build only two robots, the PegBot and the 
final one. And of course, if you are a genius and hardcore hacker who doesn’t sleep, 
please ignore all the above suggestions. 

For the staff—please be more organized. Putting stuff on WIKI doesn’t mean you can run 
the course remotely. It takes personal contacts to announce key information. Also, move 
the guest lectures into the first week since most people need the time at the end to finish 
the robot. The mock contests are waste of time since you only get to run your robot once 
in three hours. What kind of productivity is that for testing? Also, just make the lectures 
online since they are pretty self-explanatory. That’s my two cents. 

 
 

Conclusion 


