
Team Twelve Paper


Coming into Maslab with very limited programming experience, we are quite satisfied with what we 
accomplished over the course of these four weeks in January. It was very exciting to attend lecture and 
to learn how to incorporate some of the theories that we have learned in previous classes. This class 
incorporated many studies at MIT which would not have mixed otherwise. The process of building a 
robot requires knowledge of software, hardware, and mechanical design, which are not currently taught 
exclusively within one specific major at MIT. Because each member of our team majors in a different 
area -- Environmental Engineering, Mechanical Engineering, and Electrical Engineering and Computer 
Science -- we each learned a lot about the whole process of robotics as well as each others' areas of 
specialty. 

One thing Maslab has taught us is that expectations and goals should be difficult, yet realistically 
attainable within limited time projects such as this. Like all teams, we came in with many wild ideas 
about what our robot would look like, and what it should do. Our initial idea during the first week was to 
build a robot resembling a bull that will go after red balls. We even planned on playing music from 
Carmen in the background whenever the robot was going after the ball. 

Overall Strategy 

Our initial strategy was simple; we wanted to score as many points as possible within the three minute 
round. However, as we tried to implement this strategy over the month of January, we slowly realized 
that some aspects of this was much more difficult than previously anticipated and thus, our strategy 
involved into a much more simple, but only slightly less effective idea. 

Phase One: 

From examining the various scoring options and point values associated with each possibility, our initial 
strategy capitalized on the points advantage from scoring field goals. Because scoring a field goal 
offered 5 points in comparison to 3 points from scoring through the hole, we decided that our main focus 
would be scoring through a field goal. 

This initial plan involved three tasks of varying difficulty. First, the robot had to be able to find and 
capture balls. Second, these balls had to somehow be transported upwards towards a holding bin. And 
finally, third, the robot had to be able to find goals and release the captured balls into the field goals. 

Phase Two: 

Once it became apparent that the initial strategy would be unattainable given the amount of time left and 
our novice experience in programming, the strategy evolved into a simpler gathering and bulldozing 



mechanism. This merely involved two tasks: finding balls and capturing them, and finding goals and 
releasing balls into the mousehole. 

Mechanical Design and Sensors 

Following our phase two strategy, the mechanical design became a simple bulldozer-type robot that 
would catch balls into a holding area, and drive them into a mousehole. 

Chassis 

We wanted a simple yet effective design, something which would not demand much precision on the 
software side. However, it needed to be able to work well, allow for slight errors in robot trajectory, and 
still score effectively. For this we chose a dual layer chassis with a rounded front, and two recessed areas 
in the back to prevent the wheels from protruding outside of the robot body. 

In order to keep our robot within the size limit, and to maximize available space, we built two layers. 
The spacy, rounded top layer held all important components of the robot, including the computer, the 
Orc Pad controller, the Orc Board controller, the battery, the camera, and three infrared distance sensors. 
The lower layer of the robot was comprised of a large hole -- the ball hold -- in the main area of the 
robot, a gate at the front, and some space near the back on which the recessed wheels were mounted. 

Sensors 

Our robot used a total of four sensors and one camera to provide input to our software. One short-range 
infrared sensor was mounted on the front while one long-range infrared sensor was mounted 45 degrees 
each on the left and right sides. The camera was located at the front of the robot. Finally, a simple bump 
sensor was mounted on the back of the robot. 

Software Design 

The software structure is a Finite State Machine that is implemented through a large switch statement 
based on sensor input and the current state. We decided to have 6 basic states for the robot to pass 
through: decision, scanning, follow wall, wandering, capture ball, and score goal. Each state would 
either accomplish its task, time out, or find something (a ball or a goal), in order to exit from that state. 

When the program is launched, our robot starts in the decision state. It will move forward a tiny bit, take 
input from its sensors to establish its surroundings, and then make a choice of either scanning if the 
surroundings are clear, following a wall if there's a narrow corridor, or wandering if there's only one 
wall. 



Because the algorithms for finding balls and finding goals are so similar, we also decided to incorporate 
two modes into our finite state machine. The default mode is Ballmode, while the other is Goalmode. On 
the model, the green arrows represent changes of state from our timing out mechanisms, the red arrows 
account for the recognition that the robot has found a ball, and the blue arrows depict changes of state 
that result from the recognition that the robot has found a goal. 

Once the robot has captured 4 balls, or if there are fewer than 45 seconds left in the round and the robot 
has at least one ball, the robot will switch from Ballmode into Goalmode, go back to the decision state, 
and start the goal searching process. We wrote our code in such a way that scanning, wandering, and 
follow wall would either look for red balls or look for yellow goals depending on the current mode of 
the robot. That way, a lot of code is saved and reused. 

Overall Performance 

Unfortunately, our robot did not manage to score any points in the final competition. It detected a ball, 
went towards the ball to capture it, but veered off to the side and missed. The code worked as we 
expected for a minute and a half, but then experienced emergent behavior when it started to slowly 
rotate non-stop. This behavior continued until the end of the round. 

However despite the unexpected performance at final competition, our robot was able to pass 
Checkpoint Two, as well as capture balls and score through a mousehole countless times as we were 
testing. So we are convinced of its ability to function as programmed. 



Conclusions/Suggestions for future teams 

Our team made a significant amount of progress during the month -- we went from almost no knowledge 
of the topics, and particularly, little programming experience, to a robot that was able to locate and 
capture red balls and put them into the goal, at least some of the time. 

In retrospect, we realized that we could have done better to prepare beforehand. Knowing that none of us 
was familiar with Java programming, reading the tutorials and learning a little Java would have made the 
first week much easier. 

It is also apparent that group discussions are vital to additional progress. Not only is it important to keep 
everyone up to date on the latest software changes and method implementations, it also gives us a great 
chance to brainstorm new ideas and to make sure that we keep track of what has been done and what 
still needs to be done. 

Nevertheless, our team is very proud of what we have accomplished within the four weeks of IAP. 
Maslab is a great class that has challenged us and allowed us to put to use the theory we have already 
learned in our majors. Without challenge, there would be no progress. 


	Local Disk
	PhpWiki - Team Twelve Paper


