
6.189 Project 1

Readings

Get caught up on all the readings from this week!

What to hand in

Print out your hangman code and turn it in Monday, Jaunary 10 at 2:10 PM. Be sure to write your
name and section clearly at the top of your code! You only have to pass in the Hangman code; you
don’t have to pass in answers to all the intermediate questions, but if you do them, you should save
the code you write somewhere - you never know when written code might come in useful someday!

Project 1: The Game of Hangman

We’re going to write the game of Hangman. This document provides a step-by-step approach to
help you build the game. Use it as much or as little as you want. If you’re uncertain, I recommend
sticking with the document; however, if you want to try attacking this program on your own, that’s
great too. Actual coding starts in question 2.

1.	 Remember the maximum value trick we covered in lecture?1

Here’s another problem along the same vein: Let’s say I want to check and see if a number of
facts are ALL true. For example, is every element in a list less than 6? Use what you learned
from yesterday (and the homework) to write a for loop that will determine if all elements in
a variable some list are less than 6. Check your code using some list = [1,5,3,4] and on
some list = [5,3,7,5].

1If not, or we forgot to cover it, check this out...

def maxval(some_list):
max_val = None
for val in some_list:

if val > max_val:
max_val = val

return max_val

1

We can also test if AT LEAST ONE fact is true. Write a for loop that will determine if
at least one element in a list is less than 6. Test on [7,8,7,9] and [7,2,5,8].

The first is the equivalent of checking A and B and C and D and ... The second is the

equivalent of checking A or B or C or D or ...

2.	 Download the file hangman template.py from the course website; save it as hangman.py. Also
download words.txt and save it in the same place. We’re going to start by storing the state
of the game in variables at the top of the function play hangman. The state is a complete
description of all the information about the game. In the Nims game from homework 2, the
state would be:

• The current player

• How many stones are in the pile

For Hangman, we need to store 3 pieces of information:

• secret word: The word they are trying to guess (string).

• letters guessed: The letters that they have guessed so far (list).

• mistakes made: The number of incorrect guesses they’ve made so far (int).

You can name these something else if you’d like, but use a descriptive name. For now, set
secret word to be “claptrap”. Once we’ve finished our program and got it working, then we’ll
change the secret word = ’claptrap’ to be get word(), a function that pulls a random
word from the file words.txt. This function is already defined for you. (This is called
incremental programming - instead of trying to get everything right the first time, we’ll get
the basic program working then incrementally add small portions of code.) “claptrap” was
selected because it’s reasonably long and has duplicate letters – hopefully that will allow us
to catch any bugs we might make.

Question – why can’t we use len(letters guessed) for mistakes made?

Note the constant variable underneath the helper code:

MAX_GUESSES = 6

Constant just means that we won’t change it. This isn’t enforced by the compiler, so be
careful not to accidentally change the value of MAX GUESSES. My style is to put variables that
I don’t plan to change in all capital letters – other people do different things (some would
have written Max guesses, for example.) Any way works. We can decide what to do with this
at the end (for example, should we have an “easy”, “medium”, “hard” mode with different
numbers of guesses? As a programmer it’s up to you to decide!)

Idea: At the end of the program, we should test our code with another word, one that has
more than 6 distinct letters, to make sure that the program doesn’t accidentally increment
the number of mistakes on a correct guess.

3a.	 Quickie reminder: Enter the following lines of code in the prompt:

for	 i in "hello":

print i

for	 i in [’a’,True,123]:

print i

Just a reminder on how for loops work.

2

http:hangman.py

3b.	 Let’s start writing code! Here’s our approach: we’ll write functions to take care of smaller
tasks that we need to do in hangman, then use them to write the actual game itself.

First, define the function word guessed(). word guessed() will return True if the player

has successfully guessed the word, and False otherwise.

Example: If the letters guessed variable has the value

[’a’,’l’,’m’,’c’,’e’,’t’,’r’,’p’,’n’]

word guessed() will return True. If the letters guessed variable has the value

[’e’,’l’,’q’,’t’,’r’,’p’,’n’]

word guessed() will return False.

Hint: Obviously, you’ll use a loop. There are two things you could loop over – the letters in

secret word or the letters in letters guessed. Which one do you want to loop over? Don’t

just guess here, think! One of them makes sense and will be a lot easier than the other. You’ll

also be using the trick from the first problem.

4a.	 A quick break from Hangman to learn a little bit more about strings. Try this: type the
following commands into the prompt.

dir()

a = 5

dir()

b = 3

c = 7

a = 14

dir()

from string import *

dir()

What does the dir function do? (Hint: string is a library - what does that mean?)

While still at the prompt, type help(join) and help(lower).

4b.	 What lines of code belong in the missing spaces to achieve the desired outcome? (Hint: did
you read about join and lower yet?)

>>> List1 = [’H’,’e’,’a’,’r’]

>>> ???????

>>> ???????

>>> print string1

hear

5.	 Back to Hangman. So you’ll want to use the string library. Note how we have added the line
from string import * to the top of the template. This imports all of the functions from
the string library, so you can use them as if you’ve defined them within your own file.

6.	 Now define the function print guessed() that returns a string that contains the word with
a dash ‘-’ in place of letters not guessed yet.

Example: If the letters guessed variable has the value [], the expression print print guessed()

will print --------.

If the letters guessed variable has the value [’a’,’p’], the expression print print guessed()

will print --ap--ap.

If the letters guessed variable has the value [’a’,’l’,’m’,’c’,’e’,’t’,’r’,’p’,’n’],

the expression print print guessed() will print claptrap.

3

Hint: There are a lot of ways to go about this. One way is to iterate through secret word
and append the character you want to print to a list. Then use the join function to change
the list into a string: your last line will look something like return join(character list,
’’)

7.	 Now write the main game code. It helps to informally sketch out the code you want to write
- this is called “pseudocode”: an outline of what you are going to code that helps to guide
you when you begin writing code. Here’s an rough sketch of pseudocode, although you will
want to expand on this:

continually loop:

print ’’n guesses left’’

print ’’word’’

get letter in lowercase
check - has letter already been guessed?

If so, what should I do?

If not, what should I do?

check - is letter in word?

If so, what should I do?

If not, what should I do?

Write out some pseudocode that details what you want to do. It’s a good idea to do this in
comments within your code file, so you can use this as a guideline to write your code. Hint:
remember to use the break statement if you use the continual loop!

8.	 Congratulations! You’ve finished the game. Now we want to make it look pretty so everyone
else will be impressed as we are :D. Polish your game a bit using the following extensions:

1. Don’t use the word “claptrap” every time! Underneath the function play hangman you
should see a commented line that looks like this:

#	 secret_word = get_word()

Remove the ‘#’ before it, and the secret word will be a new, random word each time!

2.	 Optional : ASCII GRAPHICS! On the materials section of the course webpage, you
can find two files called hangman lib.py and hangman lib demo.py. The first contains
a set of ASCII graphics that you can use in your code; the second shows how to use the
package. You can insert these into your Hangman game to make it much more exciting
than it was ;)

Hint: Remember to add the line from hangman lib import * at the top of your code,
just like in hangman lib demo.py. Do not copy the graphics into your code! Just use
the import statement!

3.	 Optional : Allow the user the option of guessing the full word early (perhaps by modifying
your prompt to say something like, Enter a letter, or the word ’guess’ to try
and guess the full word:) Then, allow the user a try to enter in the full word)
You may want to take off 2 guesses if they enter an incorrect word...

4.	 Optional : Modify your print guessed() function such that, in addition to what it
already prints out, it prints out the letters the user has not yet guessed.

On Monday turn in the code for your completed Hangman game, stapled together, with your name
on top in comments.

4

http:demo.py
http:demo.py

MIT OpenCourseWare
http://ocw.mit.edu

6.189 A Gentle Introduction to Programming
January IAP 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

