
6.189 IAP 2011: Recursion Notes 

Recursion: (definition) noun. See recursion. 

Recursion: Formal Definition: An algorithmic technique where a function, in order to accomplish a task, calls 
itself with some part of the task. 

• Recursive solutions involve two major parts: 

1. Base case(s), in which the problem is simple enough to be solved directly. 

2. Recursive case(s). A recursive case has three components: 

(a) Divide the problem into one or more simpler or smaller parts of the problems, 

(b) Invoke the function (recursively) on each part, and 

(c) Combine the solutions of the parts into a solution for the problem. 

• Depending on the problem, any of these may be trivial or complex. 

Example: Sum 

A non-recursive example: 

def it_sum(a_list): 
result = 0 
for x in a_list: 

result += x 
return result 

We say that the above function iterates over the values in the variable a list, and returns their sum. 

Recursion is similar to iteration, such that the operation being performed is defined (partly) in terms of itself. Such 
an operation is said to be recursive. 

Here is a recursive definition of the sum() function: 

def rec_sum(a_list): 
if a_list == []: 

return 0 
else: 

return a_list[0] + rec_sum(a_list[1:]) 

rec sum computes the same exact thing as it sum, but in a different way. The first thing to note is that it does 
not use a for-loop. The second thing to note is that the rec sum function calls itself. That is to say, rec sum() is 
defined in terms of itself; it is recursive. 

How does it work? Let’s go through the parts of recursion mentioned at the introduction to this handout. 

1. Base Case: What is the base case of rec sum? 



2. Recursive case: 

(a) How do we divide the problem? 

(b) Where do we invoke the function recursively? 

(c) Finally, where do we combine the solutions? 

Now, let’s pretend to be a Python interpreter and execute the recursive calls ourselves. 

rec_sum([1, 2, 3])

= 1 + rec_sum([2, 3])


= 1 + (2 + rec_sum([3]))


= 1 + (2 + (3 + rec_sum([]))


= 1 + (2 + (3 + 0))


= 1 + (2 + 3)


= 1 + 5


= 6


Note that our base case is when the list is empty. That is the recursive call to rec sum([]), which evaluates to 0. 
A base case is very important - it is the stopping point for recursion. 

The recursive case is demonstrated by calls to rec sum where the argument is a non-empty list. During a recursive 
case, we make incremental progress towards solving the problem, and also make a recursive call to the function 
with a smaller input space. 

2 



MIT OpenCourseWare 
http://ocw.mit.edu 

6.189 A Gentle Introduction to Programming 
January IAP 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



