
MIT OpenCourseWare
http://ocw.mit.edu

6.189 Multicore Programming Primer, January (IAP) 2007

Please use the following citation format:

Rodric Rabbah, 6.189 Multicore Programming Primer, January (IAP)
2007. (Massachusetts Institute of Technology: MIT OpenCourseWare).
http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative
Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit:
http://ocw.mit.edu/terms

http://ocw.mit.edu
http://ocw.mit.edu
http://ocw.mit.edu/terms

6.189 IAP 2007

Lecture 6

Design Patterns for

Parallel Programming I

1 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

4 Common Steps to
Creating a Parallel Program

Partitioning

P0 P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

d
e
c
o
m
p
o
s
i
t
i
o
n

a
s
s
i
g
n
m
e
n
t

o
r
c
h
e
s
t
r
a
t
i
o
n

m
a
p
p
i
n
g

Sequential Tasks Processes Parallel Processors computation program

 2 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Decomposition (Amdahl’s Law)

● Identify concurrency and decide at what level to
exploit it

● Break up computation into tasks to be divided
among processes
� Tasks may become available dynamically
� Number of tasks may vary with time

●	 Enough tasks to keep processors busy
� Number of tasks available at a time is upper bound on

achievable speedup

3	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Assignment (Granularity)

● Specify mechanism to divide work among core
� Balance work and reduce communication

● Structured approaches usually work well
� Code inspection or understanding of application
� Well-known design patterns

● As programmers, we worry about partitioning first

� Independent of architecture or programming model
� But complexity often affect decisions!

4 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Orchestration and Mapping (Locality)

● Computation and communication concurrency

● Preserve locality of data

● Schedule tasks to satisfy dependences early

5 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Parallel Programming by Pattern

●	 Provides a cookbook to systematically guide programmers
� Decompose, Assign, Orchestrate, Map
� Can lead to high quality solutions in some domains

●	 Provide common vocabulary to the programming community

� Each pattern has a name, providing a vocabulary for

discussing solutions

●	 Helps with software reusability, malleability, and modularity
� Written in prescribed format to allow the reader to

quickly understand the solution and its context

●	 Otherwise, too difficult for programmers, and software will not
fully exploit parallel hardware

6	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

History

● Berkeley architecture professor
Christopher Alexander

● In 1977, patterns for city
planning, landscaping, and
architecture in an attempt to
capture principles for “living”
design

7 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Example 167 (p. 783): 6ft Balcony

Whenever you build a balcony, a porch, a gallery, or a
terrace always make it at least six feet deep. If possible,
recess at least a part of it into the building so that it is not
cantilevered out and separated from the building by a simple
line, and enclose it partially.

Therefore:

six feet deep

Image by MIT OpenCourseWare.

8 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Patterns in Object-Oriented Programming

● Design Patterns: Elements of Reusable Object-
Oriented Software (1995)
� Gang of Four (GOF): Gamma, Helm, Johnson, Vlissides
� Catalogue of patterns
� Creation, structural, behavioral

9 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Patterns for Parallelizing Programs

4 Design Spaces

Algorithm Expression	 Software Construction

● Finding Concurrency ●	 Supporting Structures
� Expose concurrent tasks � Code and data structuring

patterns

● Algorithm Structure	 ● Implementation Mechanisms

� Map tasks to processes to � Low level mechanisms used

exploit parallel architecture to write parallel programs

Patterns for Parallel
Programming. Mattson,
Sanders, and Massingill
(2005).

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 10

Here’s my algorithm.
Where’s the concurrency?

MPEG bit stream
MPEG Decoder

VLD
macroblocks, motion vectors

split
frequency encoded
macroblocks differentially coded

motion vectors
ZigZag

IQuantization Motion Vector Decode

Picture Reorder

join

IDCT

motion vectors spatially encoded macroblocks

recovered picture

Saturation

Repeat

Motion
Compensation

Color Conversion

Display

11 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Here’s my algorithm.
Where’s the concurrency?

MPEG bit stream
MPEG Decoder

VLD
macroblocks, motion vectors

split
frequency encoded
macroblocks differentially coded

motion vectors

spatially encoded macroblocks	 motion vectors

IDCT

IQuantization

ZigZag

Saturation

Motion Vector Decode

Repeat

join

Motion
Compensation

recovered picture

Picture Reorder

Color Conversion

Display

●	 Task decomposition
� Independent coarse-grained

computation
� Inherent to algorithm

●	 Sequence of statements
(instructions) that operate
together as a group
� Corresponds to some logical

part of program
� Usually follows from the way

programmer thinks about a
problem

2	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 1

Here’s my algorithm.
Where’s the concurrency?

MPEG bit stream
MPEG Decoder

VLD
macroblocks, motion vectors

split
frequency encoded
macroblocks differentially coded

motion vectors

spatially encoded macroblocks	 motion vectors

join

IDCT

IQuantization

ZigZag

Saturation

Motion Vector Decode

Repeat

Motion
Compensation

recovered picture

Picture Reorder

Color Conversion

Display

●	 Task decomposition
� Parallelism in the application

●	 Data decomposition
� Same computation is applied

to small data chunks derived
from large data set

13	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Here’s my algorithm.
Where’s the concurrency?

MPEG bit stream
MPEG Decoder

VLD
macroblocks, motion vectors

split
frequency encoded
macroblocks differentially coded

motion vectors

spatially encoded macroblocks motion vectors

join

IDCT

IQuantization

ZigZag

Saturation

Motion Vector Decode

Repeat

Motion
Compensation

recovered picture

Picture Reorder

Color Conversion

Display

● Task decomposition
� Parallelism in the application

● Data decomposition
� Same computation many data

● Pipeline decomposition
� Data assembly lines
� Producer-consumer chains

14 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Guidelines for Task Decomposition

● Algorithms start with a good understanding of the
problem being solved

● Programs often naturally decompose into tasks
� Two common decompositions are

– Function calls and
– Distinct loop iterations

● Easier to start with many tasks and later fuse them,

rather than too few tasks and later try to split them

15 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Guidelines for Task Decomposition

●	 Flexibility
� Program design should afford flexibility in the number and

size of tasks generated
–	 Tasks should not tied to a specific architecture
–	 Fixed tasks vs. Parameterized tasks

●	 Efficiency
� Tasks should have enough work to amortize the cost of

creating and managing them
� Tasks should be sufficiently independent so that managing

dependencies doesn’t become the bottleneck

●	 Simplicity
� The code has to remain readable and easy to understand,

and debug

16	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Guidelines for Data Decomposition

● Data decomposition is often implied by task
decomposition

● Programmers need to address task and data

decomposition to create a parallel program

� Which decomposition to start with?

●	 Data decomposition is a good starting point when
� Main computation is organized around manipulation of a

large data structure
� Similar operations are applied to different parts of the

data structure

DDr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 17	 6.189 IAP 2007 MIT

Common Data Decompositions

● Array data structures
� Decomposition of arrays along rows, columns, blocks

● Recursive data structures
� Example: decomposition of trees into sub-trees

problem

subproblem subproblem

compute
subproblem

compute
subproblem

compute
subproblem

compute
subproblem

subproblem subproblem

solution

merge merge

merge

split split

split

18 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Guidelines for Data Decomposition

●	 Flexibility
� Size and number of data chunks should support a wide

range of executions

●	 Efficiency
� Data chunks should generate comparable amounts of

work (for load balancing)

●	 Simplicity
� Complex data compositions can get difficult to manage

and debug

19	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Case for Pipeline Decomposition

● Data is flowing through a sequence of stages

� Assembly line is a good analogy

●	 What’s a prime example of pipeline decomposition in
computer architecture?
� Instruction pipeline in modern CPUs

●	 What’s an example pipeline you may use in your UNIX shell?

� Pipes in UNIX: cat foobar.c | grep bar | wc

●	 Other examples
� Signal processing
� Graphics

IDCT

IQuantization

ZigZag

Saturation

0	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 2

6.189 IAP 2007

Re-engineering for Parallelism

21 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Reengineering for Parallelism

● Parallel programs often start as sequential programs
� Easier to write and debug
� Legacy codes

● How to reengineer a sequential program for parallelism:
� Survey the landscape
� Pattern provides a list of questions to help assess existing code
� Many are the same as in any reengineering project
� Is program numerically well-behaved?

● Define the scope and get users acceptance
� Required precision of results
� Input range
� Performance expectations
� Feasibility (back of envelope calculations)

22 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Reengineering for Parallelism

● Define a testing protocol

● Identify program hot spots: where is most of the time spent?
� Look at code
� Use profiling tools

● Parallelization
� Start with hot spots first
� Make sequences of small changes, each followed by testing
� Pattern provides guidance

3 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 2

Example: Molecular dynamics

● Simulate motion in large molecular system
� Used for example to understand drug-protein interactions

● Forces
� Bonded forces within a molecule
� Long-range forces between atoms

● Naïve algorithm has n2 interactions: not feasible

● Use cutoff method: only consider forces from
neighbors that are “close enough”

24 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Sequential Molecular Dynamics Simulator

// pseudo code
real[3,n] atoms
real[3,n] force
int [2,m] neighbors
function simulate(steps)

for time = 1 to steps and for each atom
Compute bonded forces

Compute neighbors

Compute long-range forces

Update position

end loop
end function

25 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Finding Concurrency Design Space

Decomposition Patterns

Dependency Analysis
Patterns

Design Evaluation

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 26

Decomposition Patterns

● Main computation is a loop over atoms

● Suggests task decomposition
� Task corresponds to a loop iteration

– Update a single atom
for time = 1 to steps and

� Additional tasks for each atom
Compute bonded forces

– Calculate bonded forces Compute neighbors
Compute long-range forces

– Calculate long range forces Update position

� Find neighbors
end loop

� Update position

● There is data shared between the tasks

27 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Understand Control Dependences

Bonded forces
Neighbor list

Update position

Long-range
forces

next time step

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 28

Understand Data Dependences

Bonded forces
Neighbor list

Update position

Long-range
forcesatoms[3,n]

forces[2,n]

neighbors[2,m]

Read

Write

Accumulate

next time step

9 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 2

Evaluate Design

●	 What is the target architecture?
� Shared memory, distributed memory, message passing, …

●	 Does data sharing have enough special properties (read only,
accumulate, temporal constraints) that we can deal with
dependences efficiently?

●	 If design seems OK, move to next design space

30	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

	Untitled

