MIT OpenCourseWare
http://ocw.mit.edu

6.189 Multicore Programming Primer, January (IAP) 2007

Please use the following citation format:

Rodric Rabbah, 6.189 Multicore Programming Primer, January (IAP)
2007. (Massachusetts Institute of Technology: MIT OpenCourseWare).
http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative
Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit:
http://ocw.mit.edu/terms

http://ocw.mit.edu
http://ocw.mit.edu
http://ocw.mit.edu/terms

6.189 IAP 2007

Lecture 6

Design Patterns for
Parallel Programming |

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 1 6.189 IAP 2007 MIT

4 Common Steps to
Creating a Parallel Program

Partitioning

|
d a 0 m
c DI c
_ P
0 - D i h p
nO : : ek
P LoD ; ;
— 0 —» — My _t ‘ 9
< — . . — 7 —»
i - n a
- P2 | P
t t t
. o i
)
o) (0]
o - n
Sequential Tasks Processes Parallel Processors
computation program

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 2 6.189 IAP 2007 MIT

Decomposition (Amdahl’s Law)

e |dentify concurrency and decide at what level to
exploit it

e Break up computation into tasks to be divided
among processes

= [asks may become available dynamically
= Number of tasks may vary with time

e Enough tasks to keep processors busy

= Number of tasks available at a time is upper bound on
achievable speedup

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 3 6.189 IAP 2007 MIT

Assignment (Granularity)

e Specify mechanism to divide work among core
s Balance work and reduce communication

e Structured approaches usually work well
= Code inspection or understanding of application
= Well-known design patterns

e As programmers, we worry about partitioning first
= Independent of architecture or programming model
= But complexity often affect decisions!

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 4 6.189 IAP 2007 MIT

Orchestration and Mapping (Locality)

e Computation and communication concurrency

e Preserve locality of data

e Schedule tasks to satisfy dependences early

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 5 6.189 IAP 2007 MIT

Parallel Programming by Pattern

e Provides a cookbook to systematically guide programmers
= Decompose, Assign, Orchestrate, Map

= Can lead to high quality solutions in some domains

e Provide common vocabulary to the programming community

= Each pattern has a name, providing a vocabulary for
discussing solutions

e Helps with software reusability, malleability, and modularity

= Written in prescribed format to allow the reader to
quickly understand the solution and its context

e Otherwise, too difficult for programmers, and software will not
fully exploit parallel hardware

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 6 6.189 IAP 2007 MIT

History

e Berkeley architecture professor
Christopher Alexander

e |[n 1977, patterns for city
planning, landscaping, and
architecture in an attempt to
capture principles for “living”
design

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 7 6.189 IAP 2007 MIT

Example 167 (p. 783): 6ft Balcony

Therefore:

Whenever you build a balcony, a porch, a gallery, or a
terrace always make it at least six feet deep. If possible,
recess at least a part of it into the building so that it is not
cantilevered out and separated from the building by a simple
line, and enclose it partially.

six feet deep

Image by MIT OpenCourseWare.

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 8 6.189 IAP 2007 MIT

Patterns in Object-Oriented Programming

e Design Patterns: Elements of Reusable Object-
Oriented Software (1995)

= Gang of Four (GOF): Gamma, Helm, Johnson, Vlissides
= Catalogue of patterns
s Creation, structural, behavioral

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 9 6.189 IAP 2007 MIT

Patterns for Parallelizing Programs

4 Design Spaces

Algorithm Expression Software Construction
e Finding Concurrency e Supporting Structures
= EXpose concurrent tasks = Code and data structuring
patterns
e Algorithm Structure e Implementation Mechanisms
= Map tasks to processes to = Low level mechanisms used
exploit parallel architecture to write parallel programs

Patterns for Parallel
Programming. Mattson,
Sanders, and Massingill
(20095).

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 10 6.189 IAP 2007 MIT

Here’'s my algorithm.
Where’s the concurrency?

MPEG bit stream

MPEG Decoder l

(VLD]
s macroblocks, motion vectors

split]

frequency encoded [))
macroblocks / differentially coded
motion vectors
[ZigZag
v

[IQuantization [Motion Vector Decode J

]
)

v] v
)

[IDCT Repeat

- [
[Saturation
spatially encoded macroblocks motion vectors

[jorn]
r /4
A
Motion
Compensation

recovered picture

A
[Picture Reorder]

v

[Color Conversion]

v

[Display]

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 11

6.189 IAP 2007 MIT

Here’'s my algorithm.
Where’s the concurrency?

MPEG bit stream

MPEG Decoder l o
S e Task decomposition
macroblocks, motion vectors ,
(i) = Independent coarse-grained

frequency encoded

ma[croblocks —] diﬁerﬁ]r(l)ttiiaolllqy\;:ggggs Computatlon
ZigZag
[IQuanZzation] [Motion Vec+tor Decode - Inherent to algorlthm
v
['DfT] [Reteat
[sawraion] e Sequence of statements

spatially encoded macroblockWn vectors

[jorn

]

—

(instructions) that operate
together as a group

= Corresponds to some logical
part of program

Motion
Compensation

recovered picture

A
[Picture Reorder] u

Usually follows from the way
oot) programmer thinks about a
v problem

[Display]

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 12 6.189 IAP 2007 MIT

Here’'s my algorithm.
Where’s the concurrency?

/N

MPEG bit stream

MPEG Decoder l -
—5) e Task decomposition
macroblocks, motion vectors . . .]
ocseney oo L2 = Parallelism in the application

macroblocks

differentially coded

spatially encoded macroblockw)n vectors

[Zigz‘g] moiion vectors
[IQuanization] [Motion Vec¢tor Decode } ® Data deCOm pOSItIOn
E 'fo 1 [Repeat = Same computation is applied

to small data chunks derived
from large data set

Motion
Compensation

recovered picture

A
[Picture Reorder]

v

[Color Conversion]

v

[Display]

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 13 6.189 IAP 2007 MIT

Here’'s my algorithm.
Where’s the concurrency?

/N

MPEG bit stream

MPEG Decoder l o
——— e Task decomposition
macroblocks, motion vectors
o) = Parallelism in the application
frequeglcy l(;:~ncoded dift fiall ded
P I
ZigZag
v
[Motion Ve(ltor Decode] . Data decomposltlon
[Repeat | = Same computation many data
spatially encoded macroblockWn vectors

e Pipeline decomposition

[e]]] = Data assembly lines

e = Producer-consumer chains
recovered picture

A
[Picture Reorder] m.

v

[Color Conversion]
v

[Display]

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 14 6.189 IAP 2007 MIT

Guidelines for Task Decomposition

e Algorithms start with a good understanding of the
problem being solved

e Programs often naturally decompose into tasks

= [wo common decompositions are
— Function calls and
— Distinct loop iterations

e Easier to start with many tasks and later fuse them,
rather than too few tasks and later try to split them

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 15 6.189 IAP 2007 MIT

Guidelines for Task Decomposition

e Flexibility
= Program design should afford flexibility in the number and
size of tasks generated
— Tasks should not tied to a specific architecture
— Fixed tasks vs. Parameterized tasks

e Efficiency

= [asks should have enough work to amortize the cost of
creating and managing them

= Tasks should be sufficiently independent so that managing
dependencies doesn’t become the bottleneck

e Simplicity
= [he code has to remain readable and easy to understand,
and debug

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 16 6.189 IAP 2007 MIT

Guidelines for Data Decomposition

e Data decomposition is often implied by task
decomposition

e Programmers need to address task and data
decomposition to create a parallel program

= Which decomposition to start with?

e Data decomposition is a good starting point when

= Main computation is organized around manipulation of a
large data structure

= Similar operations are applied to different parts of the
data structure

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 17 6.189 IAP 2007 MIT

Common Data Decompositions

e Array data structures
= Decomposition of arrays along rows, columns, blocks

e Recursive data structures
= Example: decomposition of trees into sub-trees

split

subproblem subproblem

split split
compute compute compute compute
subproblem subproblem subproblem subproblem
merge
subproblem

merge
subproblem

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 18 6.189 IAP 2007 MIT

Guidelines for Data Decomposition

e Flexibility

= Size and number of data chunks should support a wide
range of executions

e Efficiency

= Data chunks should generate comparable amounts of
work (for load balancing)

e Simplicity

= Complex data compositions can get difficult to manage
and debug

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 19 6.189 IAP 2007 MIT

Case for Pipeline Decomposition

e Data is flowing through a sequence of stages [_zozg |

=

= Assembly line is a good analogy

e What's a prime example of pipeline decomposition in
computer architecture?

= Instruction pipeline in modern CPUs

e What's an example pipeline you may use in your UNIX shell?
= Pipes in UNIX: cat foobar.c | grep bar | wc

e Other examples

= Signal processing
= Graphics

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 20 6.189 IAP 2007 MIT

6.189 IAP 2007

Re-engineering for Parallelism

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 21 6.189 IAP 2007 MIT

Reengineering for Parallelism

e Parallel programs often start as sequential programs
= Easier to write and debug
= Legacy codes

e How to reengineer a sequential program for parallelism:
= Survey the landscape
Pattern provides a list of questions to help assess existing code
Many are the same as in any reengineering project
Is program numerically well-behaved?

e Define the scope and get users acceptance
= Required precision of results
= |nput range
= Performance expectations
= Feasibility (back of envelope calculations)

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 22 6.189 IAP 2007 MIT

Reengineering for Parallelism

e Define a testing protocol

e Identify program hot spots: where is most of the time spent?
= Look at code
= Use profiling tools

e Parallelization
= Start with hot spots first
= Make sequences of small changes, each followed by testing
= Pattern provides guidance

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 23 6.189 IAP 2007 MIT

Example: Molecular dynamics

e Simulate motion in large molecular system
= Used for example to understand drug-protein interactions

e Forces
s Bonded forces within a molecule °0 o O
o © o
= Long-range forces between atoms °L& 5,
© oo

e Naive algorithm has n? interactions: not feasible

e Use cutoff method: only consider forces from
neighbors that are “close enough”

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 24 6.189 IAP 2007 MIT

Sequential Molecular Dynamics Simulator

/'l pseudo code
real [3, n] atons
real [3,n] force
int [2, M neighbors

function sinmul ate(steps)

for time = 1 to steps and for each atom
Conput e bonded forces
Conput e nei ghbors
Conput e | ong-range forces
Updat e position
end | oop

end functi on

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 25 6.189 IAP 2007 MIT

Finding Concurrency Design Space

Decomposition Patterns

Dependency Analysis
Patterns

Design Evaluation

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 26 6.189 IAP 2007 MIT

Decomposition Patterns

e Main computation is a loop over atoms

e Suggests task decomposition
= [ask corresponds to a loop iteration

—- Update a single atom
/for time = 1 to steps and \

| Add|t|0na| taSkS for each atom
Co te bonded f
— Calculate bonded forces @mtg ngingﬁborgrces
Conmput e | ong-range forces
— Calculate long range forces Updat e position
. . end | oop
= Find neighbors _ /)

= Update position

e There is data shared between the tasks

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 27 6.189 IAP 2007 MIT

Understand Control Dependences

next time step

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 28 6.189 IAP 2007 MIT

Understand Data Dependences

nei ghbor s[2, m

atons[3, n

forces[2,n Read

Write

Accumulate

next time step

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 29 6.189 IAP 2007 MIT

Evaluate Design

e \What is the target architecture?
= Shared memory, distributed memory, message passing, ...

e Does data sharing have enough special properties (read only,
accumulate, temporal constraints) that we can deal with

dependences efficiently?

e |[f design seems OK, move to next design space

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 30 6.189 IAP 2007 MIT

	Untitled

