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6.189 IAP 2007

Lecture 6

Design Patterns for
Parallel Programming |
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4 Common Steps to
Creating a Parallel Program

Partitioning
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Decomposition (Amdahl’s Law)

e |dentify concurrency and decide at what level to
exploit it

e Break up computation into tasks to be divided
among processes

= [asks may become available dynamically
= Number of tasks may vary with time

e Enough tasks to keep processors busy

= Number of tasks available at a time is upper bound on
achievable speedup
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Assignment (Granularity)

e Specify mechanism to divide work among core
s Balance work and reduce communication

e Structured approaches usually work well
= Code inspection or understanding of application
= Well-known design patterns

e As programmers, we worry about partitioning first
= Independent of architecture or programming model
= But complexity often affect decisions!
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Orchestration and Mapping (Locality)

e Computation and communication concurrency

e Preserve locality of data

e Schedule tasks to satisfy dependences early
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Parallel Programming by Pattern

e Provides a cookbook to systematically guide programmers
= Decompose, Assign, Orchestrate, Map

= Can lead to high quality solutions in some domains

e Provide common vocabulary to the programming community

= Each pattern has a name, providing a vocabulary for
discussing solutions

e Helps with software reusability, malleability, and modularity

= Written in prescribed format to allow the reader to
quickly understand the solution and its context

e Otherwise, too difficult for programmers, and software will not
fully exploit parallel hardware
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History

e Berkeley architecture professor
Christopher Alexander

e |[n 1977, patterns for city
planning, landscaping, and
architecture in an attempt to
capture principles for “living”
design
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Example 167 (p. 783): 6ft Balcony

Therefore:

Whenever you build a balcony, a porch, a gallery, or a
terrace always make it at least six feet deep. If possible,
recess at least a part of it into the building so that it is not
cantilevered out and separated from the building by a simple
line, and enclose it partially.

six feet deep

Image by MIT OpenCourseWare.
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Patterns in Object-Oriented Programming

e Design Patterns: Elements of Reusable Object-
Oriented Software (1995)

= Gang of Four (GOF): Gamma, Helm, Johnson, Vlissides
= Catalogue of patterns
s Creation, structural, behavioral
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Patterns for Parallelizing Programs

4 Design Spaces

Algorithm Expression Software Construction
e Finding Concurrency e Supporting Structures
= EXpose concurrent tasks = Code and data structuring
patterns
e Algorithm Structure e Implementation Mechanisms
= Map tasks to processes to = Low level mechanisms used
exploit parallel architecture to write parallel programs

Patterns for Parallel
Programming. Mattson,
Sanders, and Massingill
(20095).
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Here’'s my algorithm.
Where’s the concurrency?
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Here’'s my algorithm.
Where’s the concurrency?
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Here’'s my algorithm.
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Guidelines for Task Decomposition

e Algorithms start with a good understanding of the
problem being solved

e Programs often naturally decompose into tasks

= [wo common decompositions are
— Function calls and
— Distinct loop iterations

e Easier to start with many tasks and later fuse them,
rather than too few tasks and later try to split them
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Guidelines for Task Decomposition

e Flexibility
= Program design should afford flexibility in the number and
size of tasks generated
— Tasks should not tied to a specific architecture
— Fixed tasks vs. Parameterized tasks

e Efficiency

= [asks should have enough work to amortize the cost of
creating and managing them

= Tasks should be sufficiently independent so that managing
dependencies doesn’t become the bottleneck

e Simplicity
= [he code has to remain readable and easy to understand,
and debug
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Guidelines for Data Decomposition

e Data decomposition is often implied by task
decomposition

e Programmers need to address task and data
decomposition to create a parallel program

= Which decomposition to start with?

e Data decomposition is a good starting point when

= Main computation is organized around manipulation of a
large data structure

= Similar operations are applied to different parts of the
data structure
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Common Data Decompositions

e Array data structures
= Decomposition of arrays along rows, columns, blocks

e Recursive data structures
= Example: decomposition of trees into sub-trees

split

subproblem subproblem

split split
compute compute compute compute
subproblem subproblem subproblem subproblem
merge
subproblem

merge
subproblem
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Guidelines for Data Decomposition

e Flexibility

= Size and number of data chunks should support a wide
range of executions

e Efficiency

= Data chunks should generate comparable amounts of
work (for load balancing)

e Simplicity

= Complex data compositions can get difficult to manage
and debug
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Case for Pipeline Decomposition

e Data is flowing through a sequence of stages [ _zozg |

=

= Assembly line is a good analogy

e What's a prime example of pipeline decomposition in
computer architecture?

= Instruction pipeline in modern CPUs

e What's an example pipeline you may use in your UNIX shell?
= Pipes in UNIX: cat foobar.c | grep bar | wc

e Other examples

= Signal processing
= Graphics
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6.189 IAP 2007

Re-engineering for Parallelism
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Reengineering for Parallelism

e Parallel programs often start as sequential programs
= Easier to write and debug
= Legacy codes

e How to reengineer a sequential program for parallelism:
= Survey the landscape
Pattern provides a list of questions to help assess existing code
Many are the same as in any reengineering project
Is program numerically well-behaved?

e Define the scope and get users acceptance
= Required precision of results
= |nput range
= Performance expectations
= Feasibility (back of envelope calculations)
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Reengineering for Parallelism

e Define a testing protocol

e Identify program hot spots: where is most of the time spent?
= Look at code
= Use profiling tools

e Parallelization
= Start with hot spots first
= Make sequences of small changes, each followed by testing
= Pattern provides guidance
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Example: Molecular dynamics

e Simulate motion in large molecular system
= Used for example to understand drug-protein interactions

e Forces
s Bonded forces within a molecule °0 o O
o © o
= Long-range forces between atoms °L& 5,
© oo

e Naive algorithm has n? interactions: not feasible

e Use cutoff method: only consider forces from
neighbors that are “close enough”
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Sequential Molecular Dynamics Simulator

/'l pseudo code
real [ 3, n] atons
real [3,n] force
int [2, M neighbors

function sinmul ate(steps)

for time = 1 to steps and for each atom
Conput e bonded forces
Conput e nei ghbors
Conput e | ong-range forces
Updat e position
end | oop

end functi on

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 25 6.189 IAP 2007 MIT



Finding Concurrency Design Space

Decomposition Patterns

Dependency Analysis
Patterns

Design Evaluation
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Decomposition Patterns

e Main computation is a loop over atoms

e Suggests task decomposition
= [ask corresponds to a loop iteration

—- Update a single atom
/for time = 1 to steps and \

| Add|t|0na| taSkS for each atom
Co te bonded f
— Calculate bonded forces @mtg ngingﬁborgrces
Conmput e | ong-range forces
— Calculate long range forces Updat e position
. . end | oop
= Find neighbors \_ /)

= Update position

e There is data shared between the tasks
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Understand Control Dependences

next time step
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Understand Data Dependences

nei ghbor s[ 2, m

atons[ 3, n

forces[2,n Read

Write

Accumulate

next time step
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Evaluate Design

e \What is the target architecture?
= Shared memory, distributed memory, message passing, ...

e Does data sharing have enough special properties (read only,
accumulate, temporal constraints) that we can deal with

dependences efficiently?

e |[f design seems OK, move to next design space
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