
MIT OpenCourseWare 
http://ocw.mit.edu 

6.189 Multicore Programming Primer, January (IAP) 2007 

Please use the following citation format: 

Eddie Scholtz and Mike Fitzgerald, 6.189 Multicore Programming 
Primer, January (IAP) 2007. (Massachusetts Institute of Technology: 
MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). 
License: Creative Commons Attribution-Noncommercial-Share Alike. 

Note: Please use the actual date you accessed this material in your citation. 

For more information about citing these materials or our Terms of Use, visit: 
http://ocw.mit.edu/terms 

http://ocw.mit.edu
http://ocw.mit.edu
http://ocw.mit.edu/terms


6.189 IAP 2007


Student Project Presentation 

Backgammon Tutor 

Scholtz, Fitzgerald 6.189 IAP 2007 MIT 



Backgammon Tutor

Eddie Scholtz and Mike Fitzgerald


Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology


February 1, 2007




How to play



Goals


� Implement the rules of backgammon 

� Create/Find a function that evaluates how
“good” a board is 

� Parallelize the evaluation of future board states 
in order to determine help determine what the
best move is this turn 

� Teach the player by suggesting a better move
and explaining why it is a better move 



Board Evaluation


� Static Evaluator 
� Linear sum of weighted board features 
� 1979 – BKG 9.8 (Hans Berliner – CMU) beat ruling world 

champion 
� Adjusted weights as game progressed 

� Neural Nets 
� Traditionally most successful 
� Trained over 100,000+ games 
� Pubeval – Gerry Tesauro, IBM Research 1993 

� Released as benchmark evaluator that produces play at the 
intermediate level 



Search


� Look at future turns in order to choose best move now 

� Large Branching Factor 
� Checkers 10 
� Chess 35-40 
� Backgammon 400 

� Uncertainty of future dice rolls (21 possible combinations) 

� Pubeval is not zero-sum 

� Does searching deeper produce a better play? 
� Most papers say search is less important than a good evaluator 
� Search produces slightly better play – Can still make a big difference 



X’s Turn 

O’s Roll 

O’s Move 

X’s Roll 

X’s Move 

~20+ Moves 

21 Dice Combos 

~20+ Moves 

21 Dice Combos 

~20+ Moves 

44

X Chooses his best Move 
for a Given Roll 

Expected = Σ pr(child) * child 

3.5 Million Boards!3.5 Million Boards!33 --11 66 1010 22 99 88

O Chooses his best Move 
for a Given Roll 

Expected = Σ pr(child) * child 

X picks his best Move 



Parallelizing Board Evaluation


� Millions of leaf nodes that each represent a board state 
� Attempt to split evenly between SPUs 
� Each has a multiple of 4 boards 
� All boards (~170,000 in benchmarks) can’t go over to the SPU 

at once 
� SPU knows how much it has to process, takes as much as it 

can, evaluates, returns, and gets more 
� Each should finish at roughly the same time 
� SIMDize code to evaluate 4 boards at once 
� Double buffer so we can DMA and compute at the same time 



Performance – Evaluating 1 Million Boards

Se

co
nd

s


20


16
 18.1 

12


8


4

4.55 3.64 3.03 0


1 2 3 4 5 6


SPUs


9.09 

6.06 



Sp
ee

du
p


Speedup – Evaluating 1 Million Boards


7 

6 

5 

4 

3 

2 

1 

0 

1 2 3 4 5 6 

SPUs 



Demo




Development Techniques 
� Get sequential code working correctly on single core 

� Squash bugs and memory leaks 

� Implement parallel code as sequential code to make sure 
algorithm works 

� Convert parallel code to run on 1 SPU 

� Get code working on all 6 SPUs 

� Most debugging done with printf statements 



Challenges


� We aren’t backgammon experts or even intermediate players 

� Getting the game to a playable state took a good chunk of our 
total time 

� Managing search tree 

� Memory management 

� Cell Debugging 

� Bit packing the boards so when we are storing millions of 
them they fit into memory 



Future Work


� Finish move tree traversal after board evaluation 

� Move tree pruning (beam search) 

� Parallelize move tree creation and traversal 

� SIMDize and buffer board evaluation 

� Training Board Evaluators 

� Monte Carlo approach to finding the best move 

� Explaining in English why one move is better than another 


