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How to play



Goals


� Implement the rules of backgammon 

� Create/Find a function that evaluates how
“good” a board is 

� Parallelize the evaluation of future board states 
in order to determine help determine what the
best move is this turn 

� Teach the player by suggesting a better move
and explaining why it is a better move 



Board Evaluation


� Static Evaluator 
� Linear sum of weighted board features 
� 1979 – BKG 9.8 (Hans Berliner – CMU) beat ruling world 

champion 
� Adjusted weights as game progressed 

� Neural Nets 
� Traditionally most successful 
� Trained over 100,000+ games 
� Pubeval – Gerry Tesauro, IBM Research 1993 

� Released as benchmark evaluator that produces play at the 
intermediate level 



Search


� Look at future turns in order to choose best move now 

� Large Branching Factor 
� Checkers 10 
� Chess 35-40 
� Backgammon 400 

� Uncertainty of future dice rolls (21 possible combinations) 

� Pubeval is not zero-sum 

� Does searching deeper produce a better play? 
� Most papers say search is less important than a good evaluator 
� Search produces slightly better play – Can still make a big difference 



X’s Turn 

O’s Roll 

O’s Move 

X’s Roll 

X’s Move 

~20+ Moves 

21 Dice Combos 

~20+ Moves 

21 Dice Combos 

~20+ Moves 

44

X Chooses his best Move 
for a Given Roll 

Expected = Σ pr(child) * child 

3.5 Million Boards!3.5 Million Boards!33 --11 66 1010 22 99 88

O Chooses his best Move 
for a Given Roll 

Expected = Σ pr(child) * child 

X picks his best Move 



Parallelizing Board Evaluation


� Millions of leaf nodes that each represent a board state 
� Attempt to split evenly between SPUs 
� Each has a multiple of 4 boards 
� All boards (~170,000 in benchmarks) can’t go over to the SPU 

at once 
� SPU knows how much it has to process, takes as much as it 

can, evaluates, returns, and gets more 
� Each should finish at roughly the same time 
� SIMDize code to evaluate 4 boards at once 
� Double buffer so we can DMA and compute at the same time 



Performance – Evaluating 1 Million Boards
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Speedup – Evaluating 1 Million Boards
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Demo




Development Techniques 
� Get sequential code working correctly on single core 

� Squash bugs and memory leaks 

� Implement parallel code as sequential code to make sure 
algorithm works 

� Convert parallel code to run on 1 SPU 

� Get code working on all 6 SPUs 

� Most debugging done with printf statements 



Challenges


� We aren’t backgammon experts or even intermediate players 

� Getting the game to a playable state took a good chunk of our 
total time 

� Managing search tree 

� Memory management 

� Cell Debugging 

� Bit packing the boards so when we are storing millions of 
them they fit into memory 



Future Work


� Finish move tree traversal after board evaluation 

� Move tree pruning (beam search) 

� Parallelize move tree creation and traversal 

� SIMDize and buffer board evaluation 

� Training Board Evaluators 

� Monte Carlo approach to finding the best move 

� Explaining in English why one move is better than another 


