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Chapter 6 

Dynamic Models


6.1 Introduction: Signals, Systems and Models 

A system may be thought of as something that imposes constraints on | or enforces re-
lationships among | a set of variables. This \system as constraints" point of view is very 

general and powerful. Rather more restricted, but still very useful and common, is the view 

of a system as a mapping from a set of input variables to a set of output variables� a mapping 

is evidently a very particular form of constraint. 

A (behavioral) model lists the variables of interest (the \manifest" variables) and the 

constraints that they must satisfy. Any combination of variables that satis�es the constraints 

is possible or allowed, and is termed a behavior of the model. 

To facilitate the speci�cation of the constraints, one may introduce auxiliary (\latent") 

variables. One might then distinguish among the manifest behavior, latent behavior, and full 

behavior (manifest as well as latent). 

For a dynamic model, the \variables" referred to above are actually signals that evolve as a 

function of time (and/or a function of other independent variables, e.g. space). We �rst need 

to specify a time axis T (discrete, continuous, in�nite, semi-in�nite . . . ) and a signal space 

W , i.e. the space of values the signals live in at each time instant. A dynamic model for a 

set of signals fwi(t)g is then completed by listing the constraints that the wi(t) must satisfy. 

Any combination w(t) � [ w1(t)� � � � � w`(t) ] of signals that satis�es the constraints is a 

behavior of the model, w(t) 2 B , where B denotes the behavior. 

We now present some examples of dynamic models, to highlight various possible model 

representations. 

Example 6.1 (Circuit) 
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Suppose the signals (variables) of interest | the manifest signals | in the above 

circuit diagram are w1(t), w2(t) and w3(t) for t � 0, so the signal space W is R
3 

and the time axis T is R
+ (i.e. the interval [0� 1]). Picking all other component 

voltages and currents as latent signals, we can write the constraints that de�ne 

the model as: 

2 Kirchho�'s voltage law (KVL) equations


2 Kirchho�'s current law (KCL) equations



 4 de�ning equations for the components 

Any set of manifest and latent signals that simultaneously satis�es (or solves) the 

preceding constraint equations constitutes a behavior, and the behavior B of the 

model is the space of all such solutions. 

The same behavior may equivalently be described by a model written entirely in 

terms of the manifest variables, by eliminating all the other variables in the above 

equations to obtain 

w1
0 � + Cw_1 

; w2 

(6.1)
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Still further reduction to a single second-order di�erential equation is possible, by 

taking the derivative of one of these equations and eliminating one variable. 

Example 6.2 (Mass-Spring System) 

An object of mass M moves on a horizontal frictionless slide, and is attached to 

one end of it by a linear spring with spring constant k. A horizontal force u(t) 

is applied to the mass. Assume that the variable z measures the change in the 

spring length from its natural length. From Newton's law we obtain the model 

Mz� � ;kz + u: 

Example 6.3 (Inverted Pendulum) 
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Figure 6.1: Mass Spring System. 

A cart of mass M slides on a horizontal frictionless track, and is pulled by a 

horizontal force u(t). On the cart an inverted pendulum of mass m is attached 

via a frictionless hinge, as shown in Figure 28.1. The pendulum's center of mass 

is located at a distance l from its two ends, and the pendulum's moment of inertia 

about its center of mass is denoted by I. The point of support of the pendulum 

is a distance s(t) from some reference point. The angle �(t) is the angle that the 

pendulum makes with respect to the vertical axis. The vertical force exerted by 

the cart on the base of the pendulum is denoted by P , and the horizontal force by 

N . What we wish to model are the constraints governing the (manifest) signals 

u(t), s(t) and �(t). 

First let us write the equations of motion that result from the free-body diagram 

of the cart. The vertical forces P , R and Mg balance out. For the horizontal 

forces we have the following equation: 

Ms� � u ; N: (6.3) 

From the free-body diagram of the pendulum, the balance of forces in the hori-
zontal direction gives the equation 

d2 

m (s + l sin(�)) � N� or 

dt2 � � 

m s� ; l sin(�)(�_)2 + l cos(�)�� � N� (6.4) 

and the balance of forces in the vertical direction gives the equation 

d2 

m (l cos(�)) � P ; mg� or 

dt2 � � 

m ;l cos(�)(�_)2 ; l sin(�)�� � P ; mg: (6.5) 

From equations (28.16) and (28.17) we can eliminate the force N to obtain � � 

_(M + m)s�+ m l cos(�)�� ; l sin(�)(�)2 � u: (6.6) 

By balancing the moments around the center of mass, we get the equation 

I��� P l sin(�) ; Nl cos(�): (6.7) 
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Figure 6.2: Inverted Pendulum 

Substituting (28.17) and (28.18) into (28.19) gives us �	 � 

I�� � l mg ; ml cos(�)(�_)2 ; ml sin(�)�� sin(�) �	 � 

; l ms� ; ml sin(�)(�_)2 + ml cos(�)�� cos(�): 

Simplifying the above expression gives us the equation 

(I + ml2)�� � mgl sin(�) ; mls�cos(�): (6.8) 

The equations that comprise our model for the system are (28.20) and (28.21). 

We can have a further simpli�cation of the system of equations by removing the 

term �� from equation (28.20), and the term �s from equation (28.21). De�ne the 

constants 

M �	 M + m 

I + ml2 

L � : 

ml 



Substituting �� from (28.21) into (28.20), we get � � 

_1 ; 

ml 

cos(�)2 s�+ 

ml 

g sin(�) cos(�) ; 

ml 

sin(�)(�)2 �
1 

u: (6.9)ML ML M M 

Similarly we can substitute �s from (28.20) into (28.21) to get � � 

1 ; 

ml 

cos(�)2 ��; 

g 

sin(�) + 

ml 

sin(�) cos(�)(�_)2 � ; 

1 

cos(�)u: (6.10)ML L ML ML 

Example 6.4 (Predator-Prey Model) 

While the previous examples are physically based, there are many examples of 

dynamic models that are hypothesized on the basis of a behavioral pattern. For 

a classical illustration, consider an island populated primarily by goats and foxes. 

Goats survive on the island's vegetation while foxes survive by eating goats. 

To build a model of the population growth of these two interacting animals, de�ne: 

N1(t) � number of goats at time t (6.11) 

N2(t) � number of foxes at time t (6.12) 

where t refers to (discrete) time measured in multiples of months. Volterra pro-
posed the following model: 

N1(t + 1) � aN1(t) ; bN1(t)N2(t) (6.13) 

N2(t + 1) � cN2(t) + dN1(t)N2(t) (6.14) 

The constants a� b� c� and d are all positive, with a � 1, c � 1. If there were no 

goats on the island, N1(0) � 0, then | according to this model | the foxes' pop-
ulation would decrease geometrically (i.e. as a discrete-time exponential). If there 

were no foxes on the island, then the goat population would grow geometrically 

(presumably there is an unlimited supply of vegetation, water and space). On 

the other hand, if both species existed on the island, then the frequency of their 

encounters, which is modeled as being proportional to the product N1N2, deter-
mines at what rate goats are eaten and foxes are well-fed. Among the questions 

that might now be asked are: What sorts of qualitative behavioral characteristics 

are associated with such a model, and what predictions follow from this behav-
ior� What choices of the parameters a� b� c� d best match the behavior observed in 

practice� 

Example 6.5 (Smearing in an Imaging System) 

Consider a model that describes the relationship between a two-dimensional ob-
ject and its image on a planar �lm in a camera. Due to limited aperture, lens 

imperfections and focusing errors, the image of a unit point source at the origin 



in the object, represented by the unit impulse �(x� y) in the object plane, will be 

smeared. The intensity of the light at the image may be modeled by some func-
tion h(x� y)� x� y 2 R, for example h(x� y) � e;a(x2 +y2 ). An object u(x� y) can be 

viewed as the superposition of individual points distributed spatially, i.e., Z Z 1 

u(x� y) � �(x ; �� y ; �) u(�� �)d� d� : 

;1 

Assuming that the e�ect of the lens is linear and translation invariant, the image 

of such an object is given by the following intensity function: Z Z 1 

m(x� y) � h(x ; �� y ; �) u(�� d�)d� d� 

;1 

We can view u as the input to this system, m as the output. 

6.2 System Representations 

There are two general representations of a dynamic model that we shall be interested in, 

namely behavioral and input-output description. 

6.2.1 Behavioral Models 

This a very general representation, which we have actually taken as the basis for our initial 

de�nition of a dynamic model. In this representation, the system is described as a collection 

of constraints on designated signals, wi. Any combination w(t) � [ w1(t)� � � � � w`(t) ] of 

signals that satis�es the constraints is a behavior of the model, w(t) 2 B , where B denotes 

the behavior. An example of such a representation is Example 6.1. 

Linearity 

We call a model linear if its behavior constitutes a vector space, i.e. if superposition applies: 

wa(t)� wb(t) 2 B �) �wa(t) + � wb(t) 2 B (6.15) 

where � and � are arbitrary scalars. Example 6.1 is evidently linear. 

Time-Invariance 

We call a model time-invariant (or translation-invariant, or shift-invariant) if every possible 

time shift of a behavior | in which each of the signals is shifted by the same amount | yields 

a behavior: 

w(t) 2 B �) �� 

w(t) � w(t ; �) 2 B � (6.16) 

for all valid � , i.e. � for which T ; � � T, with �� 

denoting the � -shift operator. Example 6.1 

is evidently time-invariant. 



Memoryless Models 

A model is memoryless if the constraints that describe the associated signals w( � ) are purely 

algebraic, i.e., they only involve constraints on w(t0) for each t0 

2 T (and so do not involve 

derivatives, integrals, etc.). More interesting to us are non-memoryless, or dynamic systems, 

where the constraints involve signal values at di�erent times. 

6.2.2 Input-Output Models 

For this class of models, the system is modeled as a mapping from a set of input signals u(t) 

to a set of output signals, y(t). We may represent this map as 

y(t) � (S u) (t) (6.17) 

(i.e., the result of operating on the entire signal u( � ) with the mapping S yields the signal 

y( � ), and the particular value of the output at some time t is then denoted as above). The 

above mapping clearly also constitutes a constraint relating u(t) and y(t)� this fact could be 

emphasized by trivially rewriting the equation in the form 

y(t) ; (S u) (t) � 0 : (6.18) 

The de�nitions of linearity, time-invariance and memorylessness from the behavioral case 

therefore specialize easily to mappings. An example of a system representation in the form of 

a mapping is Example 6.5. 

Linearity and Time-Invariance 

From the behavioral point of view, the signals of interest are given by w(t) � [u(t) y(t)]. It 

then follows from the preceding discussion of behavioral models that the model is linear if 

and only if � � 

S (�ua 

+ �ub) (t) � �ya(t) + �yb(t) � �(S ua)(t) + �(S ub)(t) (6.19) 

and the model is time-invariant if and only if � � 

S �� 

u (t) � (�� 

y)(t) � y(t ; �) (6.20) 

where �� 

is again the � -shift operator (so time-invariance of a mapping corresponds to requir-
ing mapping to commute with the shift operator). 

Memoryless Models 

Again specializing the behavioral de�nition, we see that a mapping is memoryless if and 

only if y(t0) only depends on u(t0), for every t0 

2 T: � � 

y(t0) � (S u) (t0) � f u(t0) : (6.21) 



Causality 

We say the mapping is causal if the output does not depend on future values of the input. 

To describe causality conveniently in mathematical form, de�ne the truncation operator PT 

on a signal by the condition ( 

u(t) for t � T 

(PT 

u) (t) � : (6.22)
0 for t � T 

Thus, if u is a record of a function over all time, then (PT 

u) is a record of u up to time T , 

trivially extended by 0. Then the system S is said to be causal if 

PT 

SPT 

� PT 

S : (6.23) 

In other words, the output up to time T depends only on the input up to time T . 

Example 6.6 Example 6.5 shows a system represented as an input-output map. 

It is evident that the model is linear, translation-invariant, and not memoryless 

(unless h(x� y) � �(x� y)). 

Notes 

For much more on the behavioral approach to modeling and analysis of dynamic systems, see 

J. C. Willems, \Paradigms and Puzzles in the Theory of Dynamic Systems," IEEE 

Transactions on Automatic Control, Vol. 36, pp. 259{294, March 1991. 



Exercises 

Exercise 6.1 Suppose the output y(t) of a system is related to the input u(t) via the following 

relation: Z 1 

y(t) � e;(t;s)u(s)ds: 

0 

Verify that the model is linear, time-varying, non-causal, and not memoryless. 

Exercise 6.2 Suppose the input-output relation of a system is given by ( 

u(t) if ju(t)j � 1 

y(t) � u(t) 

: 

if ju(t)j � 1ju(t)j 

This input-output relation represents a saturation element. Is this map nonlinear� Is it memoryless� 

Exercise 6.3 Consider a system modeled as a map from u(t) to y(t), and assume you know that 

when � 

1 for 1 � t � 2 

u(t) � � 

0 otherwise 

the corresponding output is 8 � 

et;1 ; et;2 for t � 1


y(t) � 
2 ; e1;t ; et;2 for 1 � t � 2 :
: 

e2;t ; e1;t for t � 2


In addition, the system takes the zero input to the zero output. Is the system causal� Is it memoryless� 

A particular mapping that is consistent with the above experiment is described by Z 1 

y(t) � e;jt;sju(s)ds: (6.24) 

;1 

Is the model linear� Is it time-invariant� 

Exercise 6.4 For each of the following maps, determine whether the model is (a) linear, (b) time-
invariant, (c) causal, (d) memoryless. 

(i) Z t 

y(t) � (t ; s)3 u(s)ds 

0 

(ii) Z t 

y(t) � 1 + (t ; s)3 u(s)ds 

0 

(iii)
 

y(t) � u 

3(t)
 

(iv) Z t 

y(t) � e;ts u(s)ds 

0 



MIT OpenCourseWare
http://ocw.mit.edu 

6.241J / 16.338J Dynamic Systems and Control 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



