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Chapter 18 

Performance of Feedback Systems
 

18.1 Introduction 

It is now time to turn to issues of performance. As noted in earlier chapters, performance 

speci�cations typically involve the closed-loop relations between the exogenous inputs w and 

the regulated outputs z. These relationships are typically captured through the use of the 

signal and system norms. The analysis of a given controlled system usually involves evaluating 

the appropriate norms. The synthesis of a controller is a harder problem, as it involves picking 

a feedback compensator K for which the closed-loop performance speci�cations are attained. 

We begin our discussions with the single-input, single-output (SISO) case, and then 

move on to study multi-input, multi-output (MIMO) extensions. Much of what we present 

for the SISO case actually echoes what is done in \classical feedback control", although our 

perspective is somewhat more modern (or neo-classical or post-modern or ...!). 

18.2 SISO Loop Shaping 

The Classical Viewpoint 

The standard \servo" or tracking con�guration of classical feedback control is shown in Fig-
ure 18.1. In this arrangement, the controller K is fed by an error signal e, which is the 

di�erence between a reference r and the measured output y of the plant P . The measurement 

is perhaps corrupted by noise n. The output of the controller is the input u to the plant. In 

addition, external disturbances may drive the plant, and are represented here via the signal 

d added in at the output of the plant. In a typical classical control design, the compensator 

K would be picked as the lowest-order system that ensures the following: 

1. the closed-loop system is stable� 
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Figure 18.1: Standard feedback con�guration with noise, disturbance, and reference inputs. 

2. the loop gain P (j!)K(j!) has large magnitude at frequencies (low frequencies, typi-
cally) where the power of the plant disturbance d or reference input r is concentrated� 

3. the loop gain has small magnitude at frequencies (high frequencies, typically) where the 

power of the measurement noise n is concentrated. 

The need for the �rst requirement is clear. The origins of the second and third requirements 

will be explained below. In order to simultaneously attain all three objectives, it is most 

convenient to have a criterion for closed-loop stability that is stated in terms of the (open-
loop) loop gain, and this is provided by the Nyquist stability criterion. 

The reasons for the second and third requirements above lie in the sensitivities of the 

closed-loop system to plant disturbances, reference signals, and measurement noise. Let S 

denote the transfer function that maps a disturbance d to the output y in the closed-loop 

system. This S is termed the (output) sensitivity function, and for the arrangement in 

Figure 18.1 it is given by 

S � (1 + PK);1 : (18.1) 

Speaking informally for the moment, if jP (j!)K(j!)j is large at frequencies where (in some 

sense) the power of d is concentrated, then jS(j!)j will be small there, so the e�ect of the 

disturbance on the output will be attenuated. Since plant disturbances are typically con-
centrated around the low end of the frequency spectrum, one would want jP (j!)K(j!)j to 

be large at low frequencies. Thus, disturbance rejection is a key motivation behind classical 

control's low-frequency speci�cation on the loop gain. 

Note that (in the SISO case) S is also the transfer function from r to e. If we want 

y to track r with good accuracy, then we want a small response of the error signal e to 

the driving signal r. This again leads us to ask for jS(j!)j to be small | or equivalently 

for jP (j!)K(j!)j to be large | at frequencies where the power of the reference signal r is 

concentrated. Fortunately, in many (if not most) control applications, the reference signal 

is slowly varying, so this requirement again reduces to asking for jP (j!)K(j!)j to be large 

at low frequencies. Thus, tracking accuracy is another motivatoin behind classical control's 

low-frequency speci�cation on the loop gain. 



In contrast, the motivation behind classical control's high frequency speci�cation is noise 

rejection. Let T denote the transfer function that maps the noise input n to the output y. 

Given the arrangement in Figure 18.1, 

T � P K(1 + P K);1 : (18.2) 

This T is termed the complementary sensitivity function, because 

T + S � 1 : (18.3) 

Note that T is also the transfer function from r to y. If jP (j!)K(j!)j is small at frequencies 

where the power in n is concentrated, then jT (j!)j will be small there, so the e�ect of the noise 

on the output will be attenuated. Measurement noise tends to occur at higher frequencies, so 

to minimize its e�ects on the output, we typically specify that jP (j!)K(j!)j be small at high 

frequencies. This constraint fortunately does not con�ict with the low-frequency constraints 

imposed above by typical d and r. Also, the constraint is well matched to the inevitable fact 

that the gain of physical systems will eventually fall o� with frequency. 

The picture of the control design task that emerges from the above discussion is the 

following: Given the plant P , one typically needs to pick the compensator K so as to obtain a 

loop gain magnitude jP (j!)K(j!)j that is large at low frequencies, \rolls o�" to low values at 

high frequencies, and varies in such a way that the Nyquist stability criterion is satis�ed. [For 

the special case of open-loop stable plants and compensators, the stability condition can be 

stated in alternative forms that are easy to check using Bode plots rather than Nyquist plots, 

and this can be more convenient. The standard rule of thumb focuses on the roll-o� around the 

crossover frequency !c, de�ned as the frequency where the loop gain magnitude is unity� this 

frequency is a crude measure of closed-loop bandwidth. The speci�cation is that the roll-o� of 

the loop gain magnitude around !c 

should be no steeper than ;20dB/decade. Furthermore, 

!c 

should be picked below frequencies where the loop gain is signi�cantly a�ected by any 

right-half-plane zeros of the loop transfer function PK� this provides an initial indication that 

right-half-plane zeros can limit the attainable closed-loop performance.] 

A Modern Viewpoint 

The challenge now is to translate the above classical control design approach into something 

more precise and systematic, and more likely to have a natural MIMO extension. The following 

example points the way, and makes free use of the signal and system norms that we de�ned 

in Lectures 11 and 12. 

Example 18.1 (SISO Disturbance Rejection and Weighted Sensitivity) 

We have already seen that the expression relating y to d in the SISO feedback 

con�guration depicted in Figure 18.1 is 

y � (1 + PK);1d : (18.4) 
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Figure 18.2: Representing the plant disturbance d as the output of a shaping �lter W whose 

input e is an arbitrary bounded energy or bounded power signal, or possibly white noise. 

Typically, d has frequency content concentrated in the low-frequency range. In 

order to get the requisite frequency characteristic, one might model d as the output 

of a shaping �lter with transfer function W , as shown in Figure 18.2, with the input 

e of the �lter being an arbitrary bounded energy or bounded power disturbance 

(or, in the stochastic setting, white noise). Thus e has no spectral \coloring", and 

all the coloring of d is embodied in the frequency response of W . 

For the rest of this example, let us focus on the bounded energy or bounded power 

models for e. Suppose our goal now is to choose K to minimize the e�ect of the 

disturbance d on the output y. From Lectures 11 and 12, and given our model 

for d, we know that this is equivalent to minimizing the H1-gain of the transfer 

function from e to y, because in the case of a bounded power e this gain is the 

attainable or \tight" bound on the ratio of rms values at the output and input, 

�y � k(1  +  P (j!)K(j!));1W (j!)k1 

� 

�e 

while in the case of a bounded energy e we again have the tight bound 

kyk2 � k(1  +  P (j!)K(j!));1W (j!)k1 

: kek2 

In terms of the sensitivity function, 

S(j!) � (1 + P (j!)K(j!));1 � 

the task is to pick K to minimize the H1 

norm kS(j!)W (j!)k1. 

If 

kS(j!)W (j!)k1 

� � � (18.5) 
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Figure 18.3: Graphical interpretation of the sensitivity function being bounded by a scaled 

reciprocal of the weighting �lter frequency response. 

then 

jS(j!)j jW (j!)j � � � 8! : (18.6) 

This implies that 

1 jS(j!)j � � jW (j!)j 

� (18.7) 

which tells us that the sensitivity function is bounded by a scaled reciprocal of the 

weighting �lter. A graphical representation of this bound is shown in Figure 18.3. 

From Figure 18.3 we can see that the value � and the �lter W (j!) give us a clear 

picture of the constraint on the sensitivity function. This allows one to more sys-
tematically design a controller, since we directly get the closed loop characteristics. 

Note also that with the Q-parametrization of K, the sensitivity function S is a�ne 

in Q, and this form is much easier to work with than the fractional form that S 

takes as a function of K. 

The major bene�t of the formulation in the above example is that a MIMO version of it 

is quite immediate, as we see in the next section. 

18.3 MIMO Loop Shaping 

Let us now revisit the above example in the MIMO setting. The example will require the 

following facts about singular values, so we ask you to con�rm these facts for yourself before 

proceeding: 



1. �max(AB) � �max(A)�max(B), and 

1 

2. If �max(CD) � 1 then �max(C) � assuming D is invertible.
 

�min(D)
 

The �rst statement follows from the fact that �max 

is the induced 2-norm, and therefore 

submultiplicative. To prove the second, apply the �rst with A � CD and B � D;1.) 

Example 18.2 (MIMO Disturbance Rejection and Weighted Sensitivity) 

The set-up and formulation for the MIMO case are the same as in the SISO 

example, with the obvious replacements of SISO subsystems by MIMO subsystems. 

One again arrives at the equation (18.5). However, the inference from this equation 

in the MIMO case is no longer (18.6) and (18.7), but rather h i 1 

�max 

(I + P (j!)K(j!));1 � � : 

�min 

[W (j!)] 

This leads us to the singular value plot shown in Figure 18.4, which is the natural 

extension of the plot we had in the SISO example. 
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Figure 18.4: Singular value plot for a MIMO system. 

With the insight provided by the above example, we can formulate a variety of MIMO 

performance problems in terms of appropriate weighting operators. Alternatively, having seen 

what sorts of modi�cations of the SISO statements are needed for the MIMO case, we can 

actually describe various MIMO control tasks in a language that is closer to that of classical 

SISO control, and this is what we do in the rest of this lecture. We shall return to the explicit 

use of weighting functions in later lectures. 



Typical Closed-Loop Perfomance Constraints 

Typically in control systems the disturbances d have frequency content that is concentrated 

in the low-frequency range. Therefore, in order to attenuate the e�ects of disturbances on 

the output, we require that �max(S(j!)) be small in the range of frequencies where the 

disturbances are active, say 0 � ! � !sy. On the other hand, typically the noise input n has 

frequency content that is concentrated in the high-frequency range. Therefore, in order to 

attenuate the e�ect of n on the output we require that �max(T (j!)) be small over a frequency 

range of the form ! � !ty. The controller K should also enable the closed-loop system to track 

reference inputs r that are typically concentrated in the low frequency range, for example in 

the interval 0 � ! � !r. This objective requires that T (j!) � I for all ! in the interval 

0 � ! � !r. This requirement can be restated as 

�max(T (j!)) � 1 

�min(T (j!)) � 1� 

in the frequency range 0 � ! � !r. 

The control signals must also generally be kept as small as possible in the presence of 

both disturbances d and measurement noise n. It is easy to see that 

u � (I + KP );1Kr ; (I + KP );1K(d + n) : 

Therefore, in order to keep the control signal small, we must make sure that � � 

�max 

(I + K(j!)P (j!));1 K(j!) 

remains small in the frequency range where disturbances and/or measurement errors are 

e�ective. We can summarize these design requirements in the following table: 

Design Requirement Closed-Loop Condition Frequency Range 

Sensitivity to Disturbances �max 

;
(I + P (j!)K(j!));1 

� � 0 Low frequency 

0 � ! � !sy 

Noise Propagation 

Attenuation �max 

;
(I + P (j!)K(j!));1 P (j!)K(j!) 

� � 0 High Frequency 

! � !ty 

Tracking of Reference 

Signals �max 

;
(I + P (j!)K(j!));1 P (j!)K(j!) 

� � 1 Low frequency 

�min 

;
(I + P (j!)K(j!));1P (j!)K(j!) 

� � 1 0 � ! � !r 

Low Con trol Energy �max 

;
(I + K(j!)P (j!));1 K(j!) 

� � 0 Frequencies where 

d and n are 

dominant 

Translation to Open-Loop Constraints 

Now let us relate the closed-loop requirements that are summarized in the preceding table 

to open-loop conditions, i.e., conditions on the singular values of the loop gain operator 



PK. The �rst design requirement is that �max 

;
(I + PK);1

� 

be small in the frequency range 

0 � ! � !sy. The relation � � 1 

�max 

(I + P (j!)K(j!));1 � 

�min(I + P (j!)K(j!)) 

implies that if �min(P (j!)K(j!)) �� 1 then � � 

�max 

(I + P (j!)K(j!));1 � 

1 

: (18.8)
�min(P (j!)K(j!)) 

Therefore, if �min(P (j!)K(j!)) �� 1 for all ! in the interval [0� !sy], then �max 

;
(I + P (j!)K(j!));1 

� 

will be small in that interval. 

For noise attenuation, consider � � 

�max 

(T (j!)) � �max 

I ; (I + P (j!)K(j!));1 �� � � 

� �max 

I + (P (j!)K(j!));1 

;1 

1 

� : 

�min 

(I + (P (j!)K(j!));1 ) 

Therefore, for the frequency range ! � !ty 

we require that � ;min 

;
I + (P (j!)K(j!));1 

� 

be � 

as large as possible. This can be guaranteed if we make �min 

(P (j!)K(j!));1 as large as 

possible or equivalently by making �max 

(P (j!)K(j!)) as small as possible. 

The tracking objective can be achieved if we ensure that � � 

�max 

(I + P (j!)K(j!));1 P (j!)K(j!) � 1 � � 

�min 

(I + P (j!)K(j!));1 P (j!)K(j!) � 1 

over the frequency interval [0� !r]. Since 

I ; (I + P (j!)K(j!));1 � (I + P (j!)K(j!));1 P (j!)K(j!) 

the tracking objective can be achieved if we require (I + P (j!)K(j!));1 to be close to zero 

on the frequency range [0� !r], that is �max 

;
(I + P (j!)K(j!));1

� 

to be small in that interval. 

Equivalently, we may require �min 

(I + P (j!)K(j!)) to be as large as possible on the interval 

[0� !r]. This can be ensured if we require that �min 

(P (j!)K(j!)) be as large as possible over 

the frequency range [0� !r]. 

The constraint of small control energy leads to the condition that �max 

;
(I + K(j!))P (j!));1 K(j!) 

� 

be made as small as possible. However, we have � � � � 

�max 

(I + K(j!)P (j!));1K(j!) � �max 

(I + K(j!)P (j!));1 �max(K(j!)) 

�max(K(j!))
� : (18.9)

�min 

(I + K(j!)P (j!)) 



Note that 

�min 

(I + K(j!)P (j!))	 � �max 

(I + K(j!)P (j!)) 

� 1 + �max(P (j!))�max(K(j!)) 

so 

�max(K(j!))	 �max(K(j!))� 

�min 

(I + K(j!)P (j!)) 1 + �max(P (j!))�max(K(j!)) 

1 

�	 :1 + �max(P (j!))�max(K(j!)) 

Therefore, we can minimize the right hand side of equation 18.9 only if we make 

1 

+ �max(P (j!))
�max(K(j!)) 

large in the ranges of frequencies where d and/or n are dominant. For example, if �max(P (j!)) 

is small at a certain set of frequencies of interest then necessarily �max(K(j!)) must also be 

small on that set. Clearly this condition is not necessary or su�cient to make �	 � 

�max 

(I + K(j!)P (j!));1 K(j!) 

;	 � 

small. It only applies to the upper bound of �max 

(I + K(j!)P (j!));1 K(j!) , which is given 

by 

�max(K(j!)) 

�min 

(I + K(j!)P (j!)) 

and it is only necessary for the upper bound to be small. 

The following table summarizes our discussion above on open-loop requirements 

Design Requirement Open-Loop Condition Frequency Range 

Sensitivity to Disturbances �min 

(P (j!)K(j! )) large Low frequency 

0 � ! � !sy 

�max 

(P (j!)K(j! )) small Noise Propagation Attenuation High Frequency 

! � !ty 

Tracking of Reference Signals �min 

(P (j!)K(j! )) large Low frequency 

0 � ! � !r 

Low Con trol Energy �max 

(K(j! )) small Frequencies where 

�max 

(P (j! )) is 

not large enough 

Figure 18.6 illustrates the open-loop conditions that we have formulated. Note that in 

this plot the minimum passband open-loop gain is bounded by �min 

[P (j!)K(j!)], and the 

maximum stopband open loop gain bounded by �max 

[P (j!)K(j!)]. 
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Figure 18.5: Singular value bounds for the open loop gain, P (j!)K(j!). 

18.4 Algebraic Constraints 

In general we would like to design feedback controllers to attenuate both noise and distur-
bances at the output. We have examined SISO and MIMO conditions that guarantee rejection 

of low frequency disturbances as well as similar conditions for the rejection of high frequency 

noise. However, one might wonder if we can 

1. minimize the in�uence of either noise or disturbances over all frequencies, and/or 

2. minimize the in�uence of both noise and disturbances at the same frequency. 

Let us begin this discussion by recalling the following: 

� S � (I + PK);1 is the transfer function mapping disturbances to the output� 

� T � PK(I + PK);1 is the transfer function mapping noise to the output. 

As we mentioned earlier, in a control design it is usually desirable to make both S and T small. 

However, because of algebraic constraints, both goals are not simultaneously achievable at the 

same frequency. These constraints are as follows. 

General Limitations 

S + T � I for all complex (Laplace domain) frequencies s. This is easily veri�ed, since 

S + T � (I + PK);1 + PK(I + PK );1 

� (I + PK) (I + PK);1 

� I : 



This result implies that if �max 

[S(j!)] is small in some frequency range, �max 

[T (j!)] � 1. 

The converse is also true. 

Fortunately, we rarely need to make both of these functions small in the same frequency 

region. 

Limitations Due to RHP Zeros and Poles 

Before we discuss these limitations, we quote the following fact from complex analysis: 

Let H(s) be a stable, causal, linear time-invariant continuous-time system. The 

maximum modulus principle implies that 

�max 

[H(s)] � sup �max 

[H(j!)] � kHk1 

8 s 2 RHP : 

! 

In other words, a stable function, which is analytic in the RHP, achieves its maximum value 

over the RHP when evaluated on the imaginary axis. 

Using this result, we can arrive at relationships between poles and zeros of the plant P 

located in the RHP and limitations on performance (e.g., disturbance and noise rejection). 

SISO Systems: Disturbance Rejection 

Consider the stable sensitivity function S � (1  + PK);1 for any stabilizing controller, K� 

then, 

S(zi) � (1 +  P (zi)K(zi))
;1 � 1 for all RHP zeros zi 

of P 

S(pi) � (1 +  P (pi)K(pi))
;1 � 0 for all RHP poles pi 

of P : 

Since the H1 

norm bounds the gain of a system over all frequencies, 

1 � jS(zi)j � kSk1 

: 

This means that we cannot uniformly attenuate disturbances over the entire frequency range 

if there are zeros in the RHP. 

SISO Systems: Noise Rejection 

Since the transfer function relating a noise input to the output is T � PK(1 + PK);1 , an 

argument for T similar to S can be made, but with the roles of poles and zeros interchanged. 

In this case, RHP poles of the plant restrict us from uniformly attenuating noise over the 

entire frequency range. 



MIMO Systems: Disturbance Rejection 

Suppose P has a transmission zero at z~ 2 RHP with left input zero direction �� . Then 

��P (z~)K(z~) � 0, and thus 

��(I + P (z~)K(z~));1 � �� : 

Stated equivalently, 

��S(z~) � �� : (18.10) 

Also, taking the conjugate transpose of both sides, 

S�(z~)� � � : (18.11) 

We then multiply the expressions in (18.10) and (18.11), obtaining 

��S(z~)S�(z~)� � ��� � 

which can be alternately written as 

��S(z~)S�(z~)� 

� 1 : (18.12)
��� 

Applying the maximum modulus principle (i.e., maxs2RHP 

�max[S(s)] occurs on the imaginary 

axis) and observing that the left hand side of (18.12) is less than or equal to �2 [S(z~)], we max 

conclude that 

kSk2 � 

��S(z~)S�(z~)� 

� 1 :1 ��� 

Thus, the conclusion regarding disturbance rejection for MIMO systems is the same as the 

conclusion we reached for SISO systems. Namely, RHP zeros make disturbance attenuation 

over all frequencies impossible. 

18.5 Analytic Constraints: The \Waterbed E�ect" 

One performance limitation of LTI SISO Feedback systems (these systems have rational sensi-
tivity transfer functions), is known as the waterbed e�ect. Loosely speaking, when one designs 

a controller to \push" the sensitivity function in a particular direction, another part of the 

sensitivity function necessarily \pulls" back in the opposite direction. This e�ect is due to a 

property of analytic functions f(s) as stated by Cauchy's theroem. In words, this theorem 

says that the line integral of an analytic function around any simple closed contour C in a 

region R is zero, i.e., Z 

f(s)ds � 0: 

C 

for every contour C in R. 



A proof of this theorem will not be shown here but can be found in standard complex analysis 

textbooks. One consequence of this theorem is the following integral constraint (known as 

Bode's Integral) on the rational sensitivity transfer function S(jw): Z 1 X 

lnjS(jwjdw � �Re(pi)� 

0 i P 

where i 

�Re(pi)� is the sum over the unstable open-loop poles (poles of P (jw)K(jw)). This 

result holds for all closed-loop systems as long as the product PK has relative degree two. 

The result implies that making S(jw) small at almost all frequencies (a common performance 

objective) is impossible since the integrated value of lnjS(jw)j over all frequencies must be 

constant. This constant is zero for open-loop stable systems (PK stable) and positive oth-
erwise. Therefore, lowering the sensitivity function in one range of frequencies, increases 

the same function in another range-hence the name \waterbed e�ect." Figure 18.5 below 

illustrates this phenomenon. 

Figure 18.6: Water-bed E�ect 

Constraints on Singular Value Plots 

From what we have seen already, it is clear that singular value plots over all frequencies are 

the MIMO system analogs of Bode plots. The following fact establishes some simple bounds 

involving singular values of S and T : 

Fact 18.5.1 If S � (I + PK);1 and T � (I + PK);1PK then the following hold 

j1 ; �max(S)j � �max(T ) � 1 + �max(S) 

and 

j1 ; �max(T )j � �max(S) � 1 + �max(T ): 

Proof: Since S + T � I then clearly 

�max(T ) � �max(I ; S) � �max(I) + �max(S)� 



and therefore �max(T ) � 1 + �max(S). For any element x 2 C 

n with kxk2 

� 1 we have 

x ; Sx � Tx 

jkxk2 

; kSxk2j � kx ; Sxk2 

� kTxk2 

j1 ; kSxk2j � �max(T ) 

j1 ; �max(S)j � �max(T ): 

Combining this relation with �max(T ) � 1 + �max(S), we obtain 

j1 ; �max(S)j � �max(T ) � 1 + �max(S): 

The other relation follows in exactly the same manner. 



Exercises 

Exercise 18.1 Suppose a discrete-time plant is given by �
 !
 

1;2z 

;1 

P � 

1;:5z;1 

1;z 

;1 

1;:5z;1 

Does there exist a controller that uniformly attenuates the input sensitivity function (I + KP );1, i.e., 

k(I + KP );1k1 

� 1. Explain. 

Exercise 18.2 Let a plant be given by �
	 s;1 ;5 

�
 

s+1G(s) � s+2 s;1 

: 

(s+1)2 s+1 

We are interested in verifying whether or not there exists a controller K such that the output 

sensitivity S � (I + PK);1 satis�es kSk1 

� 1 (i.e., the maximum singular value is strictly less than 

1 for all frequencies). If this is possible, we would like to �nd such a controller. 

1. One engineer argued as follows:	 Since the transfer functions from u1 

to y1 

and u2 

to y2 

have 

nonminimum-phase zeros, then the sensitivity cannot be uniformly attenuated. Do you accept 

this argument. If so, explain her/his rationale, and if not explain why not. 

2. Another engineer suggested that the controller can invert the plant and add a scaling factor, so 

that the sensitivity is uniformly less than 1. Again discuss this option and argue for it or against 

it. 

Exercise 18.3 Consider the following MIMO plant P (s) whose state-space description is 3232 ;1:5 1 0 1 

2 ;3 2 0 

0 :5 ;2 1 

775


1 0


x_ (t) � 

664


x(t) +


664


0 0
 

1 1
 

775


u(t) 


 
 
 
 

1 ;1:5 0 ;5 0 1:8 �� 

y(t) �	 

0 2:4 ;3:1 1 

x(t)
1 6 ;:5 ;2:8 

(a)	 Use Matlab to compute the poles and the zeros of the plant, as well as the associated input zero 

directions. (The transmission zeros should turn out to be around ;:544 � j2:43.) 

(b)	 Plot the singular values of P (j!) for ! 2 [;10;2� 102] rad/sec. Relate the shapes of the singular 

values to the pole and zero frequencies of P (s). 



(c)	 Compute kP k1 

using the Hamiltonian matrix and \gamma iteration", and compare the result to 

part b). 

(d)	 Consider the standard MIMO servo feedback loop with a compensator of transfer matrix K(s) 

preceding P (s) in the forward loop. The input to the compensator is the error signal e(t) � 

r(t);y(t), where r(t) is an external reference signal. Design K(s) to have the following properties: 

(i) K(s) should be strictly proper, second-order (i.e. a minimal realization of it is second-order), 

with no transmission zeros, and with poles that exactly cancel the transmission zeros of P (s) | 

so P (s)K(s) does not have these zeros. 

(ii) lims!0 

P (s)K(s) � 40I
 

Also obtain a state-space description of K(s).
 

(e)	 Plot the singular values of the open-loop frequency response P (j!)K(j!), the sensitivity func-
tion S(j!), and the closed-loop frequency response (or complementary sensitivity function) 

T (j!) � I ; S(j!). 

(f)	 Predict the steady-state value of the output vector y(t) when the reference input to the closed-loop 

system (which is assumed initially at rest) is the step � � 

7 

r(t) � � t � 0	 (18.13);3 

and verify by computing (with Matlab!) the transient response for the above step input. By 

carefully examining the transients of the control input and output signals, discuss the implica-
tions of having oscillatory poles in the compensator that cancel the plant transmissions zeros. 

(g)	 Predict the steady-state maximum and minimum value of the tracking error e(t) when the com-
mand input vector comprises unit sinusoids at a frequency of ! � 1 rad/sec. Repeat for ! � 2:5 

rad/sec. 
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