
Massachusetts Institute of Technology 

Department of Electrical Engineering and Computer Science 

6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS 

by A. Megretski 

Lecture 10: Singular Perturbations and Averaging1 

This lecture presents results which describe local behavior of parameter-dependent ODE 
models in cases when dependence on a parameter is not continuous in the usual sense. 

10.1 Singularly perturbed ODE 

In this section we consider parameter-dependent systems of equations 

 

ẋ(t) = f(x(t), y(t), t), 
(10.1)

�ẏ = g(x(t), y(t), t), 

where � → [0, �0] is a small positive parameter. When � > 0, (10.1) is an ODE model. 
For � = 0, (10.1) is a combination of algebraic and differential equations. Models such 
as (10.1), where y represents a set of less relevant, fast changing parameters, are fre­
quently studied in physics and mechanics. One can say that singular perturbations is the 
“classical” approach to dealing with uncertainty, complexity, and nonlinearity. 

10.1.1 The Tikhonov’s Theorem 

A typical question asked about the singularly perturbed system (10.1) is whether its 
solutions with � > 0 converge to the solutions of (10.1) with � = 0 as � � 0. A suffi­
cient condition for such convergence is that the Jacobian of g with respect to its second 
argument should be a Hurwitz matrix in the region of interest. 

Theorem 10.1 Let x0 : [t0, t1] ∞� Rn , y0 : [t0, t1] ∞� Rm be continuous functions 
satisfying equations 

ẋ0(t) = f(x0(t), y0(t), t), 0 = g(x0(t), y0(t), t), 
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where f : Rn × Rm × R ∞� Rn and g : Rn × Rm × R ∞� Rm are continuous functions. 
Assume that f, g are continuously differentiable with respect to their first two arguments 
in a neigborhood of the trajectory x0(t), y0(t), and that the derivative 

A(t) = g2
� (x0(t), y0(t), t) 

is a Hurwitz matrix for all t → [t0, t1]. Then for every t2 → (t0, t1) there exists d > 0 and 
C > 0 such that inequalities |x0(t) − x(t)| ≈ C� for all t → [t0, t1] and |y0(t) − y(t)| ≈ C� 
for all t → [t2, t1] for all solutions of (10.1) with |x(t0) − x0(t0)| ≈ �, |y(t0) − y0(t0)| ≈ d, 
and � → (0, d). 

The theorem was originally proven by A. Tikhonov in 1930-s. It expresses a simple 
principle, which suggests that, for small � > 0, x = x(t) can be considered a constant 
when predicting the behavior of y. From this viewpoint, for a given t̄ → (t0, t1), one can 
expect that 

y(t̄ + ��) � y1(�), 

where y1 : [0,∀) is the solution of the “fast motion” ODE 

ẏ1(�) = g(x0(t̄), y1(�)), y1(0) = y(t̄). 

Since y0(t̄) is an equilibrium of the ODE, and the standard linearization around this 
equilibrium yields 

�̇(�) � A(t̄)�(�) 

where �(�) = y1(�) − y0(t̄), one can expect that y1(�) � y0(t̄) exponentially as � � ∀ 
whenever A(t̄) is a Hurwitz matrix and |y(t̄) − y0(t̄)| is small enough. Hence, when � > 0 
is small enough, one can expect that y(t) � y0(t). 

10.1.2 Proof of Theorem 10.1 

First, let us show that the interval [t0, t1] can be subdivided into subintervals �k = 
[�k−1, �k ], where k → {1, 2, . . . , N} and t0 = �0 < �1 < · · · < �N = t1 in such a way that 
for every k there exists a symmetric matrix Pk = Pk 

� > 0 for which 

Pk A(t) + A(t)�Pk < −I � t → [�k−1, �k ]. 

Indeed, since A(t) is a Hurwitz matrix for every t → [t0, t1], there exists P (t) = P (t)� > 0 
such that 

P (t)A(t) + A(t)�P (t) < −I. 

Since A depends continuously on t, there exists an open interval �(t) such that t → �(t) 
and 

P (t)A(�) + A(�)�P (t) < −I � � → �(t). 
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Now the open intervals �(t) with t → [t0, t1] cover the whole closed bounded interval 
[t0, t1], and taking a finite number of t̄k , k = 1, . . . ,m such that [t0, t1] is completely 
covered by �(t̄k ) yields the desired partition subdivision of [t0, t1]. 

Second, note that, due to the continuous differentiability of f, g, for every µ > 0 there 
exist C, r > 0 such that 

¯ ¯ ¯ ¯|f(x0(t) + �x, y0(t) + �y , t) − f(x0(t), y0(t), t)| ≈ C(|�x| + |�y |) 

and 
¯ ¯ ¯ ¯ ¯|g(x0(t) + �x, y0(t) + �y , t) − A(t)�y | ≈ C|�x| + µ|�y | 

¯for all t → R, �̄x → Rn , �y → Rm satisfying 

¯ ¯t → [t0, t1], |�x − x0(t)| ≈ r, |�y − y0(t)| ≈ r. 

For t → �k let

|�y |k = (�y 

� Pk �y )
1/2 .


Then, for 
�x(t) = x(t) − x0(t), �y (t) = y(t) − y0(t), 

we have 
|�̇x| ≈ C1(|�x| + |�y |k ), 

�|�̇y |k ≈ −q|�y |k + C1|�x| + �C1 (10.2) 

as long as �x, �y are sufficiently small, where C1, q are positive constants which do not 
depend on k. Combining these two derivative bounds yields 

d 
(|�x| + (�C1/q)|�y |) ≈ C2|�x| + �C2

dt

for some constant C2 independent of k. Hence 

|�x(�k−1 + �)| ≈ e C3� (|�x(�k−1)| + (�C1/q)|�y (�k−1)|) + C3� 

for � → [0, �k − �k−1]. With the aid of this bound for the growth of |�x|, inequality (10.2) 
yields a bound for |�y |k : 

|�y (�k−1 + �)| ≈ exp(−q�/�)|�y (�k−1)| + C4(|�x(�k−1)| + (�C1/q)|�y (�k−1)|) + C4�, 

which in turn yields the result of Theorem 10.1. 
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10.2 Averaging 

Another case of “potentially discontinuous” dependence on parameters is covered by the 
following “averaging” result. 

Theorem 10.2 Let f : Rn × R × R ∞� Rn be a continuous function which is � -periodic 
with respect to its second argument t, and continuously differentiable with respect to its 
first argument. Let x̄0 → Rn be such that f(x̄0, t, �) = 0 for all t, �. For x̄ → Rn define 

� � 

f̄(x̄, �) = f(x̄, t, �). 
0 

¯If df/dx|x=0,�=0 is a Hurwitz matrix, then, for sufficiently small � > 0, the equilibrium 
x ≤ 0 of the system 

ẋ(t) = �f(x, t, �) (10.3) 

is exponentially stable. 

Though the parameter dependence in Theorem 10.2 is continuous, the question asked 
is about the behavior at t = ∀, which makes system behavior for � = 0 not a valid 
indicator of what will occur for � > 0 being sufficiently small. (Indeed, for � = 0 the 
equilibrium x̄0 is not asymptotically stable.) 

To prove Theorem 10.2, consider the function S : Rn × R ∞� Rn which maps x(0), � 
to x(�) = S(x(0), �), where x(·) is a solution of (10.3). It is sufficient to show that the 

x, �) of Ṡ with respect to its first argument, evaluated at ¯ x0derivative (Jacobian) Ṡ(¯ x = ¯
and � > 0 sufficiently small, is a Schur matrix. Note first that, according to the rules on 
differentiating with respect to initial conditions, Ṡ(x̄0, �) = �(�, �), where 

d�(t, �) df 
= � (0, t, �)�(t, �), �(0, �) = I. 

dt dx

¯Consider D(t, �) defined by 

¯d�(t, �) df ¯ ¯= � (0, t, 0)�(t, �), �(0, �) = I. 
dt dx

¯Let �(t) be the derivative of �(t, �) with respect to � at � = 0. According to the rule for 
differentiating solutions of ODE with respect to parameters, 

� t df 
�(t) = (0, t1, 0)dt1. 

dx0 

Hence 
¯�(�) = df/dx|x=0,�=0 
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is by assumption a Hurwitz matrix. On the other hand, 

¯�(�, �) − �(�, �) = o(�). 

Combining this with 
�̄(�, �) = I + �(�)� + o(�) 

yields 
�(�, �) = I + �(�)� + o(�). 

Since �(�) is a Hurwitz matrix, this implies that all eigenvalues of �(�, �) have absolute 
value strictly less than one for all sufficiently small � > 0. 


