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Lecture 10: Singular Perturbations and Averaging'

This lecture presents results which describe local behavior of parameter-dependent ODE
models in cases when dependence on a parameter is not continuous in the usual sense.

10.1 Singularly perturbed ODE

In this section we consider parameter-dependent systems of equations

i(t) = f(z(t),y(t),t),
{ ey = g(z(t),y(t)t), (10.1)

where € € [0, €] is a small positive parameter. When ¢ > 0, (10.1) is an ODE model.
For € = 0, (10.1) is a combination of algebraic and differential equations. Models such
as (10.1), where y represents a set of less relevant, fast changing parameters, are fre-
quently studied in physics and mechanics. One can say that singular perturbations is the
“classical” approach to dealing with uncertainty, complexity, and nonlinearity.

10.1.1 The Tikhonov’s Theorem

A typical question asked about the singularly perturbed system (10.1) is whether its
solutions with € > 0 converge to the solutions of (10.1) with ¢ = 0 as ¢ — 0. A suffi-
cient condition for such convergence is that the Jacobian of g with respect to its second
argument should be a Hurwitz matrix in the region of interest.

Theorem 10.1 Let zg : [to,t1] — R", yo = [to,t1] — R™ be continuous functions
satisfying equations

.To(t) = f('rO(t)?yO(t)?t)a 0= g(:EO(t)ayO(t)at)a
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where f: R"XR™ xR~ R" and g: R" xR™ x R — R™ are continuous functions.
Assume that f, g are continuously differentiable with respect to their first two arguments
in a neigborhood of the trajectory xo(t), yo(t), and that the derivative

A(t) = gé ($0<t)7 y0<t)7 t)

is a Hurwitz matriz for all t € [to,t1]. Then for every ty € (to,t1) there exists d > 0 and
C > 0 such that inequalities |xo(t) — x(t)| < Ce for all t € [to,t1] and |yo(t) — y(t)| < Ce
for all t € [ta, t1] for all solutions of (10.1) with |x(to) — zo(to)| < €, |y(to) — yo(to)| < d,
and € € (0,d).

The theorem was originally proven by A. Tikhonov in 1930-s. It expresses a simple
principle, which suggests that, for small € > 0, z = x(t) can be considered a constant
when predicting the behavior of y. From this viewpoint, for a given ¢ € (tg,t;), one can
expect that

y(t+e7) = yi(7),

where y; : [0,00) is the solution of the “fast motion” ODE

(1) = g(zo(t),y1(7)), y1(0) = y(1).

Since yo(t) is an equilibrium of the ODE, and the standard linearization around this
equilibrium yields

O(r) = A(D)8(r)

where 0(7) = y1(7) — yo(t), one can expect that y;(7) — yo(t) exponentially as 7 — oo
whenever A(t) is a Hurwitz matrix and |y(¢) — yo(t)] is small enough. Hence, when ¢ > 0
is small enough, one can expect that y(t) = yo(t).

10.1.2 Proof of Theorem 10.1

First, let us show that the interval [to,?;] can be subdivided into subintervals Ay =
[Tk—1, Tk], where k € {1,2,...,N} and to =79 < 71 < --- < 7y = t; in such a way that
for every k there exists a symmetric matrix P, = P, > 0 for which

PkA(t) + A(t)/Pk <—-1I Vte [Tk—lﬂ—k]‘

Indeed, since A(t) is a Hurwitz matrix for every t € [to, 1], there exists P(t) = P(t)) > 0
such that
P(t)A(t) + A(t)'P(t) < —1.

Since A depends continuously on ¢, there exists an open interval A(¢) such that ¢t € A(¢)
and
P)A(T) + A(T) P(t) < =1 V 7€ A(t).



Now the open intervals A(t) with t € [to,t1] cover the whole closed bounded interval
[to,t1], and taking a finite number of t;, ¥k = 1,...,m such that [tg,#;] is completely
covered by A(ty) yields the desired partition subdivision of [tg, ¢;].

Second, note that, due to the continuous differentiability of f, g, for every p > 0 there
exist C,r > 0 such that

|f (o (t) + 0ay yo(t) + 0y, t) — f(wo(t), y0(t), )] < C(10:] + |0,])

and
|9(20(t) + 0ay yo(t) + 0y, 1) — A(t)d,| < C|04] + 1|9,

for all t € R, 6, € R", §, € R" satisfying
t € lto,th], 10 —xo(t)| <7, 10, —yo(t)| < 7.

For t € Ay, let
|0yl = (%Pk(sy)l/z'

Then, for
0a(t) = x(t) — 2o(t), 0y(t) = y(t) — vo(t),

we have

102] < C1(10a] + 16,11),
eloylk < —qldylk + C1l0.| + €Ch (10.2)

as long as 0,9, are sufficiently small, where C, g are positive constants which do not
depend on k. Combining these two derivative bounds yields

d
5 (9l + (€C1L/@)|0,]) < Cofda] + €Ch
for some constant C5 independent of k. Hence
10 (-1 + 7)| < X7 (10:(T-1)| + (€C1/9) |0, (1)) + Cae

for 7 € [0, 7, — 7,—1]. With the aid of this bound for the growth of |J,|, inequality (10.2)
yields a bound for [d,|:

[0y (T + 7)| < exp(=q7/€)[0y (Te1)[ + Cal|00(Tr1)| + (¢C1/9)|0y(Th-1)]) + Cle,

which in turn yields the result of Theorem 10.1.



10.2 Averaging

Another case of “potentially discontinuous” dependence on parameters is covered by the
following “averaging” result.

Theorem 10.2 Let f: R" xR xR — R" be a continuous function which is T-periodic
with respect to its second argument t, and continuously differentiable with respect to its
first argument. Let Ty € R™ be such that f(Zg,t,€) =0 for all t,e. For z € R" define

f(Z,e) = /OTf(:T:,t, ).

If df /dx|,—0,.=0 is a Hurwitz matriz, then, for sufficiently small € > 0, the equilibrium
x =0 of the system
(t) = ef(x,t,¢€) (10.3)

18 exponentially stable.

Though the parameter dependence in Theorem 10.2 is continuous, the question asked
is about the behavior at ¢ = oo, which makes system behavior for ¢ = 0 not a valid
indicator of what will occur for € > 0 being sufficiently small. (Indeed, for e = 0 the
equilibrium Z, is not asymptotically stable.)

To prove Theorem 10.2, consider the function S : R" x R +— R" which maps z(0), ¢
to (1) = S(x(0),€), where z(-) is a solution of (10.3). It is sufficient to show that the
derivative (Jacobian) S(Z,€) of S with respect to its first argument, evaluated at Z = T
and € > 0 sufficiently small, is a Schur matrix. Note first that, according to the rules on
differentiating with respect to initial conditions, S(Zo,€) = A(T, €), where

dA(t,e)  df
. dz

(0,t,€)A(t,e), A(0,¢e) = 1.

Consider D(t,€) defined by

dA(t, €) df

T 6%(O,t,O)A(t,e), A(0,¢) = 1.

Let 6(t) be the derivative of A(t,€) with respect to € at € = 0. According to the rule for
differentiating solutions of ODE with respect to parameters,

3(t) = /t Y 0.4, 0)dty.

o dx

Hence

0(r) = df /dz]s—o.~o



is by assumption a Hurwitz matrix. On the other hand,
A(T,€) — A(7,€) = o(e).

Combining this with

A(T,e) =1+ (1)e+ o(e)

yields
A(T,e) =1+ (7)e + ofe).

Since §(7) is a Hurwitz matrix, this implies that all eigenvalues of A(7,€) have absolute
value strictly less than one for all sufficiently small € > 0.



