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Lecture 11: Volume Evolution And System Analysis1 

Lyapunov analysis, which uses monotonicity of a given function of system state along 
trajectories of a given dynamical system, is a major tool of nonlinear system analysis. 
It is possible, however, to use monotonicity of volumes of subsets of the state space to 
predict certain properties of system behavior. This lecture gives an introduction to such 
methods. 

11.1 Formulae for volume evolution 

This section presents the standard formulae for evolution of volumes. 

11.1.1 Weighted volume 

Let U be an open subset of Rn, and � : U ∞� R be a measureable function which is 
bounded on every compact subset of U . For every hypercube 

x, r) = {x = [x1; x2; . . . ; xn] : |xk − ¯Q(¯ xk | ∀ r} 

contained in U , its weighted volume with respect to � is defined by 

xn−1+r 
 ¯ � � � �
� x1+r 
� x2+r 
 


� ¯ � xn+r¯ ¯

V�(Q(x̄, r)) = . . . �(x1, x2, . . . , xn)dxn dxn−1 . . . dx2 dx1. 
¯ ¯ ¯ ¯x1−r x2−r xn−1−r xn−r 

Without going into the fine details of the measure theory, let us say that the weighted 
volume of a subset X � U with respect to � is well defined if there exists M > 0 such that 
for every � > 0 there exist (countable) families of cubes {Q1 

k } (all contained in k } and {Q2 
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U ) such that X is contained in the union of Qi 
k , the union of all Q2 is contained in the k 

union of X and Q1 
k , and 

k ) < �, V|�|(Q
2V|�|(Q

1 
k ) < M, 

k k 

in which case the volume V�(X) is (uniquely) defined as the limit of 

V�(Q
2 
k ) 

k 

as � � 0 and Q2 
k are required to have empty pair-wise intersections. A common alternative 

notation for V�(X) is 

V�(X) = �(x)dx. 
x�X 

When � ≥ 1, we get a definition of the usual (Lebesque) volume. It can be shown 
that the weighted volume is well defined for every compact subset of U , and also for every 
open subset of U for which the closure is contained in U . It is important to remember 
that not every bounded subset of U has a volume, even when � ≥ 1. 

11.1.2 Volume change under a smooth map 

The rules for variable change in integration allow one to trace the change of weighted 
volume under a smooth transformation. 

Theorem 11.1 Let U be an open subset of Rn . Let F : U ∞� U be an injective Lipschitz 
function which is differentiable on an open subset U0 of U such that the complement of U0 

in U has zero Lebesque volume. Let � : U ∞� R be a given measureable function which is 
bounded on every compact subset of U . Then, if �-weighted volume is defined for a subset 
X � U , �-weighted volume is also defined for F (X), �F -weighted volume is defined for 
X, where 

x))|, dF/dx defined for ¯�(F (x))| det(dF/dx(¯ x,
�F (x̄) = 

0, otherwise, 

and 
V�(F (X)) = V�F (X). 

Note that the formula is not always valid for non-injective functions (because of possi­
ble “folding”). It is also useful to remember that image of a line segment (zero Lebesque 
volume when n > 1) under a continuous map could cover a cube (positive Lebesque 
volume). 
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11.1.3 Volume change under a differential flow 

Let consider the case when the map F = St is defined by a smooth differential flow. 
Remember that, for a differential function g : Rn ∞� Rn , div(g) is the trace of the 
Jacobian of g. 

Theorem 11.2 Let U be an open subset of Rn . Let f : U ∞� Rn and � : U ∞� R be 
¯continuously differentiable functions. For T > 0 let UT be the set of vectors x ≤ U such 

that the ODE 
ẋ(t) = f (x(t)), 

has a solution x : [0, T ] ∞� U such that x(0) = x̄. Let ST : UT ∞� U be the map defined by 
ST (x(0)) = x(T ). Then, if X is contained in a compact subset of UT and has a �-weighted 
volume, the map t ∞� V�(St(X)) is well defined, differentiable, and its derivative at t = 0 
is given by 

dV�(St(X)) 
= Vdiv(�f )(X). 

dt 
Proof According to Theorem 11.2, 

V�(St(X)) = �(St(¯ x))|d¯x))| det(dSt(x)/dx(¯ x. 
X 

Note that 
� 

dSt(x̄) � 
� = f (x̄),

dt t=0 

and dSt(x)/dx(¯ x), where x) = �(t, ¯

d�(t, x̄) df � 
= � �(t, ¯ x) = I. x), �(0, ¯

dt dx x=St(x̄) 

Hence det(dSt(x)/dx) > 0, and, at t = 0, 

d d 
x))| = det(�(t, ¯| det(dSt(x)/dx(¯ x))

dt dt 
d�(t, x̄) � 

= trace 
dt t=0 

= div(f )(x̄), 

where the equality 

d 
det(A(� )) = det(A(� ))trace A(� )−1 dA(� ) 

d� d� 

was used. Finally, at t = 0, 

d 
�(St(¯ x))| = (∈�)(¯ x) + �(¯ x) = div(�f )(x).x))| det(dSt(x)/dx(¯ x)f (¯ x)div(f )(¯

dt 
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11.2 Using volume monotonicity in system analysis 

Results from the previous section allow one to establish invariance (monotonicity) of 
weighted volumes of sets evolving according to dynamical system equations. This section 
discusses application of such invariance in stability analysis. 

11.2.1 Volume monotonicity and stability 

Given an ODE model 
ẋ(t) = f(x(t)), (11.1) 

where f : Rn ∞� Rn is a continuously differentiable function, condition div(f) < 0, if 
satisfied everywhere except possibly a set of zero volume, guarantees strictly monotonic 
decrease of Lebesque volume of sets of positive volume. This, however, does not guarantee 
stability. For example, the ODE 

ẋ1 = −2x1, 

ẋ2 = x2 

does not have a stable equilibrium, while volumes of sets are strictly decreasing with its 
flow. 

However, it is possible to make an opposite statement that a system for which a 
positively weighted volume is strictly monotonically increasing cannot have a stable equi­
librium. 

Theorem 11.3 Let f : Rn ∞� Rn and � : Rn ∞� R be continuously differentiable 
functions such that �-weighted volume of every ball in Rn is positive, and div(f�)(x̄) → 
0 for all x̄ ≤ Rn . Then system (11.1) has no asymptotically stable equilibria and no 
asymptotically stable limit cycles. 

Proof Assume to the contrary that x0 : R ∞� Rn is a stable equilibrium or a stable 
limit cycle solution of (11.1). Then there exists � > 0 such that 

lim min |x(t) − x0(�)| = 0 
t�� � 

for every solution x = x(·) of (11.1) such that x(0) belongs to the ball 

B0 = {¯ ¯x : |x − x0(0)| ∀ �. 

Let v(t) = V�(St(B0)), where St is the system flow. By assumption, v is monotonically 
non-increasing, v(0) = 0, and v(t) � 0 as t � ⊂. The contradiction proves the theorem. 
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11.2.2 Volume monotonicity and strictly invariant sets 

Let us call a set X � Rn strictly invariant for system (11.1) if every maximal solution 
x = x(t) of (11.1) with x(0) ≤ X is defined for all t ≤ R and stays in X for all t ≤ 
R. Obviously, if X is a strictly invariant set then, for every weight �, V�(St(X)) does 
not change as t changes. Therefore, if one can find a � for which div(�f) > 0 almost 
everywhere, the strict invariance of X should imply that X is a set of a zero Lebesque 
volume, i.e. the following theorem is true. 

Theorem 11.4 Let U be an open subset of Rn . Let f : U ∞� Rn and � : U ∞� R be 
continuously differentiable functions. Assume that div(f�) > 0 for almost all points of U . 
Then, if X is a bounded closed subset of U which is strictly invariant for system (11.1), 
the Lebesque volume of X equals zero. 

As a special case, when n = 2 and � ≥ 1, we get the Bendixon theorem, which claims 
that if, in a simply connected region U , ÷(f) > 0 almost everywhere, there exist no 
non-equilibrium periodic trajectories of (11.1) in U . Indeed, a non-equilibrium periodic 
trajectory on a plane bounds a strictly invariant set. 

11.2.3 Monotonicity of singularly weighted volumes 

So far, we considered weights which were bounded in the regions of interest. A recent ob­
servation by A. Rantzer shows that, when studying asymptotic stability of an equilibrium, 
it is most beneficial to consider weights which are singular at the equilibrium. 

In particular, he has proven the following stability criterion. 

Theorem 11.5 Let f : Rn ∞� Rn and � : Rn/{0} ∞� R be continuously differentiable 
functions such that f(0) = 0, �(x)f(x)/|x| is integrable over the set |x| → 1, and div(f�) > 
0 for almost all x ≤ Rn . If either � → 0 or 0 is a locally stable equilibrium of (11.1) then 
for almost all initial states x(0) the corresponding solution x = x(t) of (11.1) converges 
to zero as t � ⊂. 

To prove the statement for the case when x = 0 is a stable equilibrium, for every r > 0 
consider the set Xr of initial conditions x(0) for which 

sup |x(t)| > r � T > 0. 
t�[T,�) 

The set X is strictly invariant with respect to the flow of (11.1), and has well defined 
�-weighted volume. Hence, by the strict �-weighted volume monotonicity, the Lebesque 
measure of Xr equals zero. Since this is true for all r > 0, almost every solution of (11.1) 
converges to the origin. 
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Example 11.1 (Rantzer) The system 

−2x1 + x1 − x 2 ẋ1 = 2 
2 

ẋ2 = −6x2 + 2x1x2 

satisfies conditions of Theorem 11.5 with �(x) = |x|−4 . 


