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Lecture 12: Local Controllability1 

In this lecture, nonlinear ODE models with an input are considered. Partial answers to 
the general controllability question (which states can be reached in given time from a 
given state by selecting appropriate time-dependent control action) are presented. 

More precisely, we consider systems described by 

ẋ(t) = a(x(t), u(t)), (12.1) 

where a : Rn × Rm is a given continuously differentiable function, and u = u(t)⇒∀ Rn 

is an m-dimensional time-varying input to be chosen to steer the solution x = x(t) in 
a desired direction. Let U be an open subset of Rn , x̄0 ∗ Rn . The reachable set for a 
given T > 0 the (U -locally) reachable set RU (x̄0, T ) is defined as the set of all x(T ) where 
x : [0, T ] , u : [0, T ] is a bounded solution of (12.1) such that x(0) = x̄0⇒∀ Rn ⇒∀ Rm 

and x(t) ∗ U for all t ∗ [0, T ]. 
Our task is to find conditions under which RU (x̄0, T ) is guaranteed to contain a neig­

borhood of some point in Rn, or, alternatively, conditions which guarante that RU (x̄0, T ) 
has an empty interior. In particular, when x̄0 is a controlled equilibrium of (12.1), i.e. 

x0, ¯ u0 ∗ Rm, complete local controllability of (12.1) at ¯a(¯ u0) = 0 for some ¯ x0 means that 
for every φ > 0 and T > 0 there exists � > 0 such that RU (¯ x0) for every x, T ) � B� (¯
¯ x0), where U = Bα(¯x ∗ B� (¯ x0) and 

x) = {¯ xBr (¯ x1 ∗ Rn : x1 − ¯|¯ | √ r} 

denotes the ball of radius r centered at x̄. 
1Version of October 31, 2003 
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12.1 Systems with controllable linearizations 

A relatively straightforward case of local controllability analysis is defined by systems 
with controllable linearizations. 

12.1.1 Controllability of linearized system 

Let x0 : [0, T ] , u0 : [0, T ] be a bounded solution of (12.1). The standard ⇒∀ Rn ⇒∀ Rm 

linearization of (12.1) around the solution (x0(·), u0(·)) describes the dependency of small 
state increments �x(t) = x(t) − x0(t) + o(�x(t)) on small input increments �u(t) = u(t) −
�u(t): 

�̇x(t) = A(t)�x(t) + B(t)�u(t), (12.2) 

where 
⎛ ⎛ 

da ⎛ da ⎛ 
A(t) = ⎛ , B(t) = ⎛ (12.3) 

⎛dx ⎛ du x=x0(t),u=u0(t) x=x0 (t),u=u0(t) 

are bounded measureable matrix-valued functions of time. 
Let us call system (12.2) controllable on time interval [0, T ] if for every �̄0 �̄T ∗ Rn 

x, x 

there exists a bounded measureable function �u : [0, T ] such that the solution of ⇒∀ Rm 

¯(12.2) with �x(0) = �̄0 satisfies �x(T ) = �T . The following simple criterion of controllability x x 

is well known from the linear system theory. 

Theorem 12.1 System (12.2) is controllable on interval [0, T ] if and only if the matrix 
� T 

Wc = M(t)−1B(t)B(t)�(M(t)�)−1dt 
0 

is positive definite, where M = M(t) is the evolution matrix of (12.2), defined by 

Ṁ(t) = A(t)M(t), M(0) = I. 

Matrix Wc is frequently called the Grammian, or Gram matrix of (12.2) over [0, T ]. 
It is easy to see why Theorem 12.1 is true: the variable change �x(t) = M(t)z(t) reduces 
(12.2) to 

ż(t) = M(t)−1B(t)�u(t). 

Moreover, since 
� T 

z(T ) = M(t)−1B(t)�u(t)dt 
0 

is a linear integral dependence, function �u can be chosen to belong to any subclass which 
is dense in L1(0, T ). For example, �u(t) can be selected from the class of polynomials, 
class of piecewise constant functions, etc. 

Note that controllability over an interval � implies controllability over every interval 
�+ containing �, but in general does not imply controllability over all intervals �− 

contained in �. Also, system (12.2) in which A(t) = A0 and B(t) = B0 are constant is 
equivalent to controllability of the pair (A,B). 
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12.1.2 Consequences of linearized controllability 

Controllability of linearization implies local controllability. The converse is not true: a 
nonlinear system with an uncontrollable linearization can easily be controllable. 

Theorem 12.2 Let a : Rn × Rm be continuously differentiable. Let x0 : [0, T ] 
Rn , u0 : 

⇒∀ Rn ⇒∀
[0, T ] be a bounded solution of (12.1). Assume that system (12.2), defined 

by (12.3), is controllable over [0, T ]. Then for every φ > 0 there exists � > 0 such that for 
⇒∀ Rm 

x0, ¯all ¯ xT satisfying 
x0 − x0(0) < �, xT − x0(T ) < � |¯ | |¯ | 

there exist functions x : [0, T ] , u : [0, T ] satisfying the ODE in (12.2) and ⇒∀ Rn ⇒∀ Rm 

conditions 

x0, x(T ) = ¯x(0) = ¯ xT , x(t) − x0(t) < φ, u(t) − u0(t) < φ � t ∗ [0, T ].| | |

In other words, if linearization around a trajectory (x0, u0) is controllable then from 
every point in a sufficiently small neigborhood of x0(0) the solution of (12.1) can be 
steered to every point in a sufficiently small neigborhood of x0(T ) by applying a small 
perturbation u = u(t) of the nominal control u0(t). In particular, this applies when 

x0, u0(t) ≥ ¯x0(t) ≥ ¯ u0 is a conditional equilibrium, in which case A,B are constant, and 
hence controllability of (12.2) is easy to verify. 

When system (12.2) is not controllable, system (12.1) could still be: for example, the 
second order ODE model 

3 ẋ1 = x2, 

ẋ2 = u 

has an uncontrollable linearization around the equilibrium solution x1 ≥ 0, x2 ≥ 0, but is 
nevertheless locally controllable. 

The proof of Theorem 12.2 is based on the implicit mapping theorem. Let e1, . . . , φn 

be the standard basis in Rn . Let �u = �k be the controls which cause the solution of u 

(12.2) wit �x(0) = 0 to reach �x(T ) = ek . For φ > 0 let 

x ∗ Rn : xBα = {¯ ¯ < φ}.| | 
The function S : Bα × Bα , which maps w = [w1; w2; . . . ; wn] ∗ Bα and v ∗ Bα to⇒∀ Rn 

S(w, v) = x(T ), where x = x(t) is the solution of (12.1) with x(0) = x0(0) + v and 
n 

u(t) = u0 + wk �
k 
u (t), 

k=1 

is well defined and continuously differentiable when φ > 0 is sufficiently small. The 
derivative of S with respect to w at w = v = 0 is identity. Hence, by the implicit mapping 
theorem, equation S(w, v) = x has a solution w � 0 whenever v and ¯¯ x − x0(T ) are| | | |
small enough. 
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12.2 Controllability of driftless models 

In this section we consider ODE models in which the right side is linear with respect to 
the control variable, i.e. when (12.1) has the special form 

m 

ẋ(t) = g(x(t))u(t) = gk (x(t))u(t), x(0) = x̄0, (12.4) 
k=1 

where gk : are given C� (i.e. having continuous derivatives of arbitrary order) X0 ⇒∀ Rn 

functions defined on an open subset X0 of Rn, and u(t) = [u1(t); . . . ; um(t)] is the vector 
control input. Note that linearization (12.2) of (12.4) around every equilibrium solution 
x0(t) ≥ x0 = const, u0(t) = 0 yields A = 0 and B = g(¯¯ x0), which means that the 
linearization is never controllable unless m = n. Nevertheless, it turns out that, for a 
“generic” function g, system (12.4) is expected to be completely controllable, as long as 
m > 1. 

12.2.1 Local controllability and Lie brackets 

Let us say that system (12.4) is locally controllable at a point ¯ if for every φ > 0,x0 ∗ X0 

T > 0, and ¯ x − ¯x ∗ X0 such that ¯ x0| < φ there exists a bounded measureable function 
u : [0, T ] defining a solution of (12.4) with x(0) = ¯ x and

|
x0 such that x(T ) = ¯⇒∀ Rm 

x0 < φ � t ∗ [0, T ].x(t) − ¯| | 

The local controlability conditions to be presented in this section are based on the 
notion of a Lie bracket. Let us write h3 = [h1, h2] (which reads as “h3 is the Lie bracket 
of h1 and h2”) when hk : are continuous functions defined on an open subset X0 ⇒∀ Rn 

X0 of R
n, functions h1, h2 are continuously differentiable on X0, and 

h3(¯ x)h2(¯ x)h1(¯x) = ḣ1(¯ x) − ḣ2(¯ x) 

x ∗ X0, where ḣk (¯ xfor all ¯ x) denotes the Jacobian of hk at ¯. 
The reasoning behind the definition, as well as a more detailed study of the properties 

of Lie brackets, will be postponed until the proof of the controllability results of this 
subsection. 

Let us call a set of functions hk : , (k = 1, . . . , q) complete at a point x̄ ∗ X0X0 ⇒∀ Rn 

if either the vectors hi(¯
⇒∀ Rn 

x) with i = 1, . . . ,m span the whole Rn or there exist functions 
hk : X0 , (k = q + 1, . . . , N), such that for every k > q we have hk = [hi, hs] for 
some i, s < k, and the vectors hi(x̄) with i = 1, . . . , N span the whole Rn . 

Theorem 12.3 If C� functions gk : X0 ⇒∀ Rn form a complete set at ¯ ∗ X0 thenx0 

system (12.4) is locally controllable at x̄0. 
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Theorem 12.3 provides a sufficient criterion of local controllability in terms of the span 
of all vector fields which can be generated by applying repeatedly the Lie bracket operation 
to gk . This condition is not necessary, as can be seen from the following example: the 
second order system 

ẋ1 = u1, 

ẋ2 = α(x1)u2, 

where function α : R ⇒∀ R is infinitely many times continuously differentiable and such 
that 

α(0) = 0, α(y) > 0 for y = 0, α(k)(0) = 0 � k, ∈
is locally controllable at every point x̄0 ∗ Rn despite the fact that the corresponding set 
of vector fields 

1 0 
g1(x) = , g2(x) = 

0 α(x1) 

is not complete at x̄ = 0. On the other hand, the example of the system 

ẋ = xu, 

which is not locally controlable at x̄ = 0, but is defined by a (single element) set of vector 
¯fields which is complete at every point except x = 0, shows that there is little room for 

relaxing the sufficient conditions of Theorem 12.3. 

12.2.2 Proof of Theorem 12.3 

Let S denote the set of all continuous functions s : �s ⇒∀ X0, where �s is an open subset 
of R ×X0 containing {0}×X0 (�s is allowed to depend on s). Let Sk ∗ S be the elements 
of S defined by 

x) = x(δ) : ẋ(t) = gk (x(t)), x(0) = ¯Sk (δ, ¯ x. 

Let Sg be subset of S which consists of all functions which can be obtained by recursion 

x, δ) = S�(k)(sk (¯ x, δ) = ¯sk+1(¯ x, δ), αk (δ)), β0(¯ x, 

where �(k) ∗ {1, 2, . . . ,m} and αk : R ⇒∀ R are continuous functions such that αk (0) = 0. 
One can view elements of Sg as admissible state transitions in system (12.2) with piecewise 
constant control depending on parameter δ in such a way that δ = 0 corresponds to the 
identity transition. Note that for every s ∗ Sg there exists an “inverse” s� ∗ Sg such that 

s(s �(¯ x x, δ) ∗ �s� ,x, δ), δ) = ¯ � (¯

defined by applying inverses S�(k)(·,−αk (δ)) of the basic transformations S�(k)(·, αk (δ)) 
in the reverse order. 
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Let us call a C� function h : X0 ⇒∀ Rn implementable in control system (12.4) if 
for every integer k > 0 there exists a function which is k times continuously s ∗ Sg 

differentiable in the region δ → 0 and in the region δ √ 0, such that 

s(¯ x + δh(¯x, δ) = ¯ x) + o(δ) (12.5) 

as δ ∀ 0, δ 0 for all ¯ x) of an implementable x ∗ X0. One can say that the value h(¯→
function h(·) at a given point ¯ describes a direction in which solutions of (12.4) x ∗ X0 

can be steered from ¯.x
We will prove Theorem 12.3 by showing that Lie bracket of two implementable vec­

tor fields is also an implementable vector field. After this is done, an implicit function 
argument similar to one used in the proof of Theorem 12.2 shows local controllability of 
(12.4). 

Now we need to prove two intermediate statements concerning the set of implementable 
vector fields. Remember that for the differential flow (t, ¯ (x̄, t) defined by a smooth x) ⇒∀ Sh

vector field h we have 
x, t1, t2) = Sh(¯Sh(Sh(¯ x, t1 + t2), 

which, in particular, implies that 

t2 

Sh(¯ x + th(¯ x)h(¯x, t) = ¯ x) + ḣ(¯ x) + O(t3)
2 

as t ∀ 0. This is not necessarily true for a general transition s from the definition of 
an implementable vector field h. However, the next Lemma shows that s can always be 
chosen to match the first k Taylor coefficients of Sh . 

Lemma 12.1 If h is implementable then for every integer k > 0 there exists a k times 
continuously differentiable function s ∗ Sg such that 

x, δ) = Sh(¯s(¯ x, δ) + O(δ k ). (12.6) 

Proof By assumption, (12.6) holds for k = 2 and δ → 0, where s is N times continuously 
differentiable in the region δ → 0, and N can be chosen arbitrarily large. Assume that for 
δ 0→ 

s(¯ x, δ) + δ k w(¯x, δ) = Sh(¯ x) + O(δ k+1 , 

(which is implied by (12.6)), where 2 √ k < N and w is continuously differentiable. Then 

s (¯ x,−δ) − δ k w(¯x, δ) = Sh(¯ x) + O(δ k+1 , 

and hence for every a, b > 0 the function 

x, δ) = s(s �(s(¯sa,b(¯ x, aδ), bδ), aδ) 
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satisfies 
sa,b(¯ x, (2 ⊃ a − b)δ) + (2a k − bk )δ k w(¯x, δ) = Sh(¯ x) + O(δ k+1 . 

Since k → 2, one can choose a, b in such way that 

2a − b = 1, 2a k = bk , 

which yields (12.6) with k increased by 1. 
After (12.6) is established for δ → 0, s can be defined for negative arguments by 

x,−δ) = s �(¯s(¯ x, δ), δ 0,→

which makes it k − 1 times continuously differentiable. 

Next lemma is a key result explaining the importance of Lie brackets in controllability 
analysis. 

Lemma 12.2 If vector fields h1, h2 are implementable then so is their Lie bracket h = 
[h2, h1]. 

Proof By Lemma 12.1, there exist 2 ⊃ k + 2 times continuously differentiable (for δ = 0) ∈
functions s1, s2 ∗ Sg such that 

si(¯ x + δhi(¯ x)hi(¯x, δ) = ¯ x) + δ 2ḣi(¯ x) + o(δ 2). 

Hence (check this!), s3 ∗ Sg defined by 

s3(¯ x, δ), δ),−δ),−δ),x, δ) = s2(s1(s2(s1(¯

satisfies 
s3(¯ x + δ 2h(¯x, δ) = ¯ x) + o(δ 2). 

Now for i = 3, 4, . . . , 2 ⊃ k + 2 let 

si+1(¯ x, δ/
≈

2),−δ/
≈

2).x, δ) = si(si(¯

By induction, 
i 

si+2(¯ x + δ 2i�iq (¯x, δ) = ¯ x) + o(δ 2i), 
q=1 

i.e. the transformation from si to si+1 removes the smallest odd power of δ in the Taylor 
expansion for si. Hence 

x, δ) = s2k+2(¯s(¯ x,
≈

δ), δ 0→
defines a k times continuously differentiable function for sufficiently small δ → 0, and 

s(¯ x + δh(¯x, δ) = ¯ x) + o(δ) 

for δ → 0, δ ∀ 0. 
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12.2.3 Frobenius Theorem 

Let gk : Rn , k = 1, . . . ,m, be k times (k → 1) continuously differentiable functions. ⇒∀ Rn 

We will say that gk define a regular Ck distribution D({gk }) at a point x̄0 ∗ Rn if vectors 
gk (x̄0) are linearly independent. Let X0 be an open subset of Rn . The distribution 
D({gk }) is called involutive on X0 if the value gij (x̄) of every Lie bracket gij = [gi, gj ] 

x) for every ¯belongs to the linear span of gk (¯ x ∗ X0. Finally, distribution D({gk }) is 
called completely Ck integrable over X0 if there exists a set a set of k times continuously 
differentiable functions hk : X0 ⇒∀ R, k = 1, . . . , n − m, such that the gradients ≡hk (x̄) 
are linearly independent for all x̄ ∗ X0, and 

≡hi(¯ x) = 0 � ¯x)gj (¯ x ∗ X0. 

The following classical result gives a partial answer to the question of what happens 
to controllability when the Lie brackets of vector fields gk do not span Rn . 

Theorem 12.4 Let D({gk }) define a Cr distribution (r 1) which is regular at x̄0 ∗ Rn .→
Then the following conditions are equivalent: 

(a) there exists an open set X0 containing x̄0 such that D({gk }) is completely Cr inte­
grable over X0; 

(b) there exists an open set X0 containing x̄0 such that D({gk }) is involutive on X0. 

Essentially, the Frobenius theorem states that in the neigborhood of a point where 
the dimension of the vector fields generated by Lie brackets of a given driftless control 
system is maximal but still less than n, there exist non-constant functions of the state 
vector which remain constant along all solutions of the system equations. 

The condition of regularity in Theorem 12.4 is essential. For example, when 
⎝� �⎡ � � 

x2 n = 2, m = 1, x̄0 = 0 ∗ R2 , g 
x1 = , 
x2 −x1 

the distribution defined by g is smooth and involutive (because [g, g] = 0 for every vector 
field g), but not regular at x0. Consequently, the conclusion of Theorem 12.4 does not ¯
hold at x̄0 = 0, but is nevertheless valid in a neigborhood of all other points. 

The “locality” of complete integrability is also essential for the theorem. For example, 
the vector field 

⎠⎦ ⎞� ⎦ ⎞

2 2x1 x1 + (1 − x2 
2 − x2)

2 

g ⎤� ⎣� = � ⎣x2 x3 

x3 −x2 

defines a smooth regular involutive distribution on the whole R3 . However, the distri­
bution is not completely integrable over R3, while it is still completely integrable in a 
neigborhood of every point. 
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12.2.4 Proof of Theorem 12.4 

The implication (a)≤(b) follows straightforwardly from the reachability properties of Lie 
brackets. Let us prove the implication (b)≤(a). 

Let S� denote the differential flow map associated with gk , i.e. Sk
� (x̄) = x(δ), where k 

x = x(t) is the solution of 
ẋ(t) = gk (x(t)), x(0) = x̄. 

Let �(¯ x), . . . , gm(¯x) denote the span of g1(¯ x). The following stetement, which relies on 
m

k (¯both regularity and involutivity of the family {gk }k=1, states that the Jacobian Dt x) of 
St at x maps �(¯ x)). This a generalization of the (obvious) fact that, for ¯ x) onto �(Sk

t (¯k 

a single vector field g : Rn , moving the initial condition x(0) by g(x(0))� of a ⇒∀ Rn 

solution x = x(t) of dx/dt = g(x) results in x(t) shifted by g(x(t))� + o(�). 

Lemma 12.3 Under the assumptions of Theorem 12.4, 

k (¯ x) = �(Sk
t (¯Dt x)�(¯ x)). 

Proof According to the rules for differentiation with respect to initial conditions, for a 
fixed ¯ k (¯x, Dk (t) = Dt x) satisfies the ODE 

d 
Dk (t) = ġk (x(t))Dk (t), Dk (0) = I, 

dt 

where x(t) = Sk
t (¯ x) denotes the Jacobian of g at ¯x), and ġk (¯ x. Hence 

D̄k (t) = Dk (t)g(x̄), where g(x̄) = [g1(x̄) g2(x̄) . . . gm(x̄)], 

satisfies 
d 

D̄k (t) = ġk (x(t)) D̄k (t), D̄k (0) = g(x̄). (12.7)
dt 

Note that the (12.7) is an ODE with a unique solution. Hence, it is sufficient to show 
that (12.7) has a solution of the form 

m 

D̄k (t) = g(x(t))�(t) = gi(x(t))�k (t), (12.8) 
i=1 

where � = �(t) is a continuously differentiable m-by-m matrix valued function of time, 
and �i(t) is the i-th row of �(t). Indeed, substituting into (12.7) yields 

[ġi(x(t))gk (x(t))�k (t) + gi(x(t))�̇k (t)] = ġk (x(t)) gi(x(t))�k (t) 
i i 

and �(0) = I. Equivalently, 
g(x(t))�̇(t) = A(t)�(t), 
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where A(t) is the n-by-m matrix with columns gki(x(t)), gki = [gk, gi]. By involutivity 
and regularity, A(t) = g(x(t))a(t) for some continuous m-by-m matrix valued function 
a = a(t). Thus, the equation for �(t) becomes 

�̇(t) = a(t)�(t), �(0) = I, 

¯hence existence of �(t) such that Dk(t) = g(x(t))�(t) is guaranteed. 

x0), . . . , gn(¯Let gm+1, . . . , gn be C� smooth functions gi : R
n ⇒∀ Rn such that vectors g1(¯ x0) 

form a basis in Rn . (For example, the functions gi with i > m can be chosen constant). 
Consider the map 

F (z) = Sz1 (Sz2 (. . . (Szn (x̄0)) . . . )),1 2 n 

defined and k times continuously differentiable for z = [z1, . . . , zn] in a neigborhood of 
zero in Rn . F is a k times differentiable map defined in a neigborhood of z = 0, ¯ ¯x = x0. 
Since the Jacobian Ḟ (0) of F at zero, given by 

x0) g2(¯ x0)]Ḟ (0) = [g1(¯ x0) . . . gn(¯

is not singular, by the implicit mapping theorem there exists a k times continuously 
differentiable function 

z = H(x) = [hn(x); hn−1(x); . . . ; h1(x)] 

defined in a neigborhood of x̄0, such that F (H(x)) ≥ x. 
Let us show that functions hi = hi(x) satisfy the requirements of Theorem 12.4. 

Indeed, differentiating the identity F (H(x)) ≥ x yields 

Ḟ (H(x))Ḣ(x) = I, (12.9) 

where 
Ḣ(x) = [≡hn(x); ≡hn−1(x); . . . ; ≡h1(x)] 

is the Jacobian of H at x, and 

Ḟ (z) = [f1(z) f2(z) . . . fn(x)] 

is the Jacobian of F at z. Hence vectors fi(z) form a basis, as well as the co-vectors 
≡hi(x)h. By Lemma 12.3, vectors fi(z) with i √ m belong to �(F (z)) = �(x) (and 
hence, by linear independence, form a basis in �(x)). On the other hand, (12.9) implies 

r(x)fi(H(x)) = 0 for r √ n − m and i √ m. Hence ≡hr(x) for r √ n − m are linearly ≡h
independent and orthogonal to all gi(x) for i √ m. 


