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This lecture gives an introduction into system analysis using Lyapunov functions and
their generalizations.

5.1 Recognizing Lyapunov functions

There exists a number of slightly different ways of defining what constitutes a Lyapunov
function for a given system. Depending on the strength of the assumptions, a variety of
conclusions about a system’s behavior can be drawn.

5.1.1 Abstract Lyapunov and storage functions

In general, Lyapunov functions are real-valued functions of system’s state which are mono-
tonically non-increasing on every signal from the system’s behavior set. More gener-
ally, stotage functions are real-valued functions of system’s state for which explicit upper
bounds of increments are available.

Let B = {z} be a behavior set of a system (i.e. elements of B are are vector sig-
nals, which represent all possible outputs for autonomous systems, and all possible in-
put/output pairs for systems with an input). Remember that by a state of a system
we mean a function x : B x [0,00) — X such that two signals z, 2o € B define same
state of B at time ¢t whenever x(z;(+),t) = x(22(-),t) (see Lecture 1 notes for details and
examples). Here X is a set which can be called the state space of B. Note that, given the
behavior set B, state space X is not uniquelly defined.
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Definition A real-valued function V' : X +— R defined on state space X of a system
with behavior set B and state x : B x [0,00) +— X is called a Lyapunov function if
t— V(t)=V(x(t)) = V(x(z(-),t)) is a non-increasing function of time for every z € B.

According to this definition, Lyapunov functions provide limited but very explicit
information about system behavior. For example, if X = R" and V(z(t)) = |z(¢)]* is a
Lyapunov function then we now that system state z(¢) remains bounded for all times,
though we may have no idea of what the exact value of z(t) is.

For conservative systems in physics, the total energy is always a Lyapunov function.
Even for non-conservative systems, it is frequently important to look for energy-like ex-
pressions as Lyapunov function candidates.

One can say that Lyapunov functions have an explicit upper bound (zero) imposed on
their increments along system trajectories:

V(z(z(-),t1)) = V(z(2(-),t0)) <0 Vit >tg >0, z € B.

A useful generalization of this is given by storage functions.

Definition Let B be a set of n-dimensional vector signals z : [0,00) — R". Let
o : R" — R be a given function such that o(z(t)) is locally integrable for all z(-) € B. A
real-valued function V' : X — R defined on state space X of a system with behavior set
B and state z : B x [0,00) — X is called a storage function with supply rate o if

V(a(z(), ) = V(z(2(-), 1)) < / o(x(t)dt Y >t >0, 2B (5.1)

to

In many applications o is a function comparing the instantaneous values of input and
output. For example, if B = {z(t) = [v(t); w(t)]} is the set of all possible input/output
pairs of a given system, existence of a non-negative storage function with supply rate
o(z(t)) = |v(t)|* — |w(t)|? proves that power of the output, defined as
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never exceed power of the input.

Example 5.1 Let behavior set B = {(i(t),v(t))} descrive the (dynamcal) voltage-current
relation of a passive single port electronic circuit. Then the total energy E = E(t)
accumulated in the circuit can serve as a storage function with supply rate



5.1.2 Lyapunov functions for ODE models

It is important to have tools for verifying that a given function of a system’s state is
monotonically non-increasing along system trajectories, without explicitly calculating so-
lutions of system equations. For systems defined by ODE models, this can usually be
done.

Consider an autonomous system defined by ODE model

z(t) = a(z(t)), (5.2)

where a : X — R" is a function defined on a subset of R". A functional V' : X — R is
a Lyapunov function for system (5.2) if ¢t — V(z(¢)) is monotonically non-increasing for
every solution of (5.2). Remember that x : [to,t1] — X is called a solution of (5.2) if the
composition a o x is absolutely integrable on [tg,t;] and equality

t
x(t) = x(to) +/ a(x(7))dr
to
holds for all t € [to, t1].

To check that a given function V' is a Lyapunov function for system (5.2), one usually
attempts to differentiate V' (z(t)) with respect to t. If X is an open set, and both V' and «
are differentiable (note that the differentiability of z is assured by the continuity of a), the
composition ¢ — V' (z(t)) is also differentiable, and the monotonicity condition is given by

VV(Z)a(z) <0 VI e X, (5.3)

where VV (z) denotes the gradient of V' at x.

In some applications one may be forced to work with systems that have non-differentiable
solutions (for example, because of a jump in an external input signal). The convenient
Lyapunov function candidates V' may also be non-differentiable at some points. In such
situations, it is tempting to consider, for every z € X, the subgradient of V at * € X in
the direction a(Z). One may expect that non-positivity of such subgradients, which can
be expressed as

lim sup V(@ +ta(@)) = V(z) <0 VzelX, (5.4)

€—0,6>0 p<t<e 13

implies that V' is a valid Lyapunov function. However, this is not always true.

Example 5.2 Using the famous example of a Kantor function, one can construct a
bounded integrable function ¢ : R — R and a continuous function V' : R — R such
that t — V(Z + ta(Z)) is constant in a neigborhood of t = 0 for every z € R, but the
ODE (5.2) has a solution for which V' (z(t)) is strictly monotonically increasing!

Here by a Kantor function we mean a continuous strictly monotonic function k :
[0,1] — R such that k(0) = 0 and k(1) = 1 despite the fact that k(t) is constant on a



family 7 = {T'} of open disjoint intervals T C [0, 1] of total length 1. Indeed, for a fixed
Kantor function k define

V(z) = floor(z) + k(1 — floor(z)),

where floor(z) denotes the largest integer not larger than z. Let a(Z) be zero on every
interval (m + t1,m + t3), where m is an integer and (¢1,t2) € 7, and a(z) = 0 otherwise.
Then z(t) = t is a solution of ODE (5.2), but V' (z(t)) is strictly monotonically increasing,
despite the fact that ¢ — V(Z + ta(z)) is constant in a neighorhood of ¢t = 0 for every
z € R.

However, if V' and all solutions of (5.2) are “smooth enough”, condition (5.4) is suffi-
cient for V' to be a Lyapunov function.

Theorem 5.1 If X is an open set in R", V : X +— R is locally Lipschitz, a : X — R" is
continuous, and condition (5.4) is satisfied then V (x(t)) is monotonically non-increasing
for all solutions x : [ty t1] — X of (5.2).

Proof We will use the following statement: if b : [tg,t;] — R is continuous and satisfies
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then h is monotonically non-increasing. Indeed, for every r > 0 let h,.(t) = h(t) — rt.
If h, is monotonically non-increasing for all » > 0 then so is h. Otherwise, assume that
h.(t3) > h,(t2) for some ty < ty < t3 < t; and r > 0. Let t4 be the maximal solution of
equation h,(t) = h,(t2) with t € [ta, t3]. Then h,(t) > h,(t4) for all t € (t4, 3], and hence
(5.5) is violated at t = t4.

Now let M be the Lipschitz constant for V' in a neigborhood of the trajectory of x.
Since a is continuous,
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Hence the maximum (over ¢ € [tg,t; — §]) of

V(z(t+6)) = V(z(t) V() +da(x(t)) — V(x(t)) +V(:v(t +9)) = V(x(t) + da(z(t)))
) ) )
< Vi(xz(t) + (5a(x((st))) — V(z(t)) M x(t+0) — xESt) — da(x(t))

converges to a non-positive limit as 6 — 0. [ ]



A time-varying ODE model
21 (t) = ar(z1(¢), 1) (5.6)
can be converted to (5.2) by introducing
z(t) = [z1(2);t], a([barz;T]) = a1 (z, T);1],

in which case the Lyapunov function V' = V(z(t)) = V(x(¢),t) can naturally depend on
time.

5.1.3 Storage functions for ODE models

Consider the ODE model

#(t) = fz(t), u(t)) (5.7)
with state vector z(t) € X C R", input u(t) € U C R™, where f: X xU — R"is a
given function. Let o : X x U — R be a given functional. A function V' : X +— R is
called a storage function with supply rate o for system (5.7)

V() = V(x(to)) < /ttl o (x(t), u(t))dt

for every pair of integrable functions = : [to,t1] — X, w : [to,t1] — U such that the
composition ¢ — f(x(t),u(t)) satisfies the identity

£(t) = (ty) + / F(a(t), ut))dt

for all ¢t € [to, t1].

When X is an open set, f and o are continuous, and V is continuously differentiable,
verifying that a given f is a valid storage function with supply rate o is straightforward:
it is sufficient to check that

VV . f(z,u) <o(z,u) Ve X uel.
When V is locally Lipschitz, the following generalization of Theorem 5.1 is available.

Theorem 5.2 If X is an open set in R", V : X — R is locally Lipschitz, f,o : X xU +—
R" are continuous, and condition

lim sup Viz +t/(z,0)) = V(7) <o(z,u) Vze X,ueU (5.8)
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is satisfied then V (z(t)) is a storage function with supply rate o for system (5.7).

The proof of the theorem follows the lines of Theorem 5.1. Further generalizations to
discontinuous functions f, etc., are possible.



