6.254 Game Theory with Engineering Applications

Midterm

April 8, 2008

Problem 1 : (35 points) Consider a game with two players, where the pure strategy of each player is given by $x_i \in [0, 1]$. Assume that the payoff function u_i of player *i* is given by

$$u_i(x_1, x_2) = a_i x_i + \mathcal{I}\{x_i < x_j\},$$

where $0 < a_i \leq 1$ and \mathcal{I} is the indicator function given by

$$\mathcal{I}\{x_i < x_j\} = \begin{cases} 1 & \text{if } x_i < x_j \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Does this game have a pure strategy Nash equilibrium? Verify your answer.
- (b) Show that there cannot be an atom at any $x \in (0, 1]$ in either player's mixed strategy at an equilibrium.
- (c) Find all mixed strategy Nash equilibria.

Problem 2 : (30 points) Consider the following oligopoly competition model: There are two firms. Each firm *i* simultaneously chooses price $p_i \in [0, 1]$. Assume that the demand function for firm *i*, given by $d_i(p_1, p_2)$, is twice differentiable. Each firm is interested in maximizing his profits (assume for simplicity that there is no cost).

(a) Formulate this problem as a strategic form game.

- (b) Suppose first that the marginal revenue of firm i, i.e., the function $d_i(p_1, p_2) + p_i \frac{\partial d_i(p_1, p_2)}{\partial p_i}$, is nondecreasing in p_j for all i = 1, 2. Show that the resulting game is supermodular. Does the set of pure Nash equilibria have a smallest and a largest element? Briefly explain. Construct a learning algorithm that converges to the smallest Nash equilibrium.
- (c) Now suppose that the marginal revenue of firm *i*, i.e., the function $d_i(p_1, p_2) + p_i \frac{\partial d_i(p_1, p_2)}{\partial p_i}$, is nonincreasing in p_j for all i = 1, 2. Does the set of Nash equilibria still have a smallest and a largest element? Verify your answer.

Problem 3 : (35 points) Consider a two-player game with the following payoff structure:

	А	В	С	D
А	1, 1	2, 0	0, 2	-1, 3
В	3, -1	1, 1	1, 1	2,0
С	2,0	1, 1	-1, 3	0, 2
D	0, 2	1, 1	-2, 4	1, 1

- (a) Find all pure and mixed Nash equilibria of this game.
- (b) Does fictitious play converge in the time-average sense for this game? Verify your answer.
- (c) Find all correlated equilibrium payoffs, i.e., all possible payoffs at any correlated equilibrium.

6.254 Game Theory with Engineering Applications Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.