
6.254: Game Theory with Engineering Applications February 23, 2010 

Lecture 6: Continuous and Discontinuous Games 

Lecturer: Asu Ozdaglar 

1 Introduction 

In this lecture, we will focus on: 

Existence of a mixed strategy Nash equilibrium for continuous games (Glicksberg’s • 

theorem). 

Finding mixed strategy Nash equilibria in games with infinite strategy sets. • 

Uniqueness of a pure strategy Nash equilibrium for continuous games. • 

2 Continuous Games 

In this section, we consider games in which players may have infinitely many pure strategies. 

In particular, we want to include the possibility that the pure strategy set of a player may be 

a bounded interval on the real line, such as [0,1]. We will follow the development of Myerson 

[3], pp. 140-148. 

Definition 1 A continuous game is a game �I, (Si), (ui)� where I is a finite set, the Si 

are nonempty compact metric spaces, and the ui : S �→ R are continuous functions. 

A compact metric space is a general mathematical structure for representing infinite 

sets that can be well approximated by large finite sets. One important fact is that, in 

a compact metric space, any infinite sequence has a convergent subsequence. Any closed 

bounded subset of a finite-dimensional Euclidean space is an example of a compact metric 

space. More specifically, any closed bounded interval of the real line is an example of a 

compact metric space, where the distance between two points x and y is given by . In|x − y|
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our treatment, we will not need to refer to any examples more complicated than these (see 

the Appendix for basic definitions of a metric space and convergence notions for probability 

measures). 

We next state the analogue of Nash’s Theorem for continuous games. 

Theorem 1 (Glicksberg) Every continuous game has a mixed strategy Nash equilibrium. 

With continuous strategy spaces, the space of mixed strategies Σ is infinite-dimensional, 

therefore we need a more powerful fixed point theorem than the version of Kakutani we have 

used before. Here we adopt an alternative approach to prove Glicksberg’s Theorem, which 

can be summarized as follows: 

•	 We approximate the original game with a sequence of finite games, which correspond 

to successively finer discretization of the original game. 

•	 We use Nash’s Theorem to produce an equilibrium for each approximation. 

•	 We use the weak topology and the continuity assumptions to show that these converge 

to an equilibrium of the original game. 

2.1 Closeness of Two Games and �-Equilibrium 

Let u = (u1, . . . , uI ) and ũ = (ũ1, . . . , ũI ) be two profiles of utility functions defined on S 

such that for each i ∈ I, the functions ui : S �→ R and ũi : S �→ R are bounded measurable 

functions. We may define the distance between the utility function profiles u and ũ as 

max sup |ui(s) − ũi(s)|. 
i∈I s∈S 

Consider two strategic form games defined by two profiles of utility functions: 

G = �I, (Si), (ui)�, G̃ = �I, (Si), (ũi)�. 

If σ is a mixed strategy Nash equilibrium of G, then σ need not be a mixed strategy Nash 

equilibrium of G̃. Even if u and ũ are very close, the equilibria of G and G̃ may be far apart. 
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For example, assume there is only one player, S1 = [0, 1], u1(s1) = �s1, and ũ1(s1) = −�s1, 

where � > 0 is a sufficiently small scalar. The unique equilibrium of G is s∗ 
1 = 1, and the 

unique equilibrium of G̃ is s∗ 
1 = 0, even if the distance between u and ũ is only 2�. 

However, if u and ũ are very close, there is a sense in which the equilibria of G are 

“almost” equilibria of G̃. 

Definition 2 (�-equilibrium) Given � ≥ 0, a mixed strategy σ ∈ Σ is called an �-equilibrium 

if for all i ∈ I and si ∈ Si, 

ui(si, σ−i) ≤ ui(σi, σ−i) + �. 

Obviously, when � = 0, an �-equilibrium is a Nash equilibrium in the usual sense. 

The following result shows that such �-equilibria have a continuity property across games. 

Proposition 1 Let G be a continuous game. Assume that σk σ, �k �, and for each k,→ → 

σk is an �k-equilibrium of G. Then σ is an �-equilibrium of G. 

Proof: For all i ∈ I, and all si ∈ Si, we have 

ui(si, σ
k ) ≤ ui(σ

k) + �k ,−i

Taking the limit as k →∞ in the preceding relation, and using the continuity of the utility 

functions together with the convergence of probability distributions under weak topology 

[see Eq. (11)], we obtain, 

ui(si, σ−i) ≤ ui(σ) + �, 

establishing the result. � 

We next define formally the closeness of two strategic form games. 

Definition 3 Let G and G� be two strategic form games with 

G = �I, (Si), (ui)�, G� = �I, (Si), (u
�
i)�. 

Assume that the utility functions ui and u�i are measurable and bounded. Then G� is an 

α−approximation to G if for all i ∈ I and s ∈ S, we have 

|ui(s) − u�i(s)| ≤ α. 

6-3 



� 
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We next relate the �−equilibria of close games. 

Proposition 2 If G� is an α-approximation to G and σ is an �-equilibrium of G�, then σ is 

an (� + 2α)-equilibrium of G. 

Proof: For all i ∈ I and all si ∈ Si, we have 

ui(si, σ−i) − ui(σ) = ui(si, σ−i) − u�i(si, σ−i) + u�i(si, σ−i) − u�i(σ) + u�i(σ) − ui(σ) 

≤ � + 2α. 

The next proposition shows that we can approximate a continuous game with an essen

tially finite game to an arbitrary degree of accuracy. 

Proposition 3 For any continuous game G and any α > 0, there exists an “essentially 

finite” game which is an α-approximation to G. 

Proof: Since S is a compact metric space, the utility functions ui are uniformly continuous, 

i.e., for all α > 0, there exists some � > 0 such that 

ui(s) − ui(t) ≤ α, 

for all d(s, t) ≤ �. Since Si is a compact metric space, it can be covered with finitely many 

open balls Ui
j , each with radius less than �. Assume without loss of generality that these 

balls are disjoint and nonempty. Choose an sj ∈ U j for each i, j. Define the “essentially i i 

finite” game G� with the utility functions u�i defined as 

I

u�i(s) = ui(s1
j , . . . , sj ), ∀ s ∈ U j = Uk

j .I 
k=1 

Then for all s ∈ S and all i ∈ I, we have 

|u�i(s) − ui(s)| ≤ α, 

since d(s, sj ) ≤ � for all j, implying the desired result. � 
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2.2 Proof of Glicksberg’s Theorem 

We now return to the proof of Glicksberg’s Theorem. Let {αk} be a scalar sequence with 

αk 0.↓ 

•	 For each αk, there exists an “essentially finite” αk-approximation Gk of G by Proposi

tion 3. 

•	 Since Gk is “essentially finite” for each k, it follows using Nash’s Theorem that it has 

a 0-equilibrium, which we denote by σk . 

•	 Then, by Proposition 2, σk is a 2αk-equilibrium of G. 

•	 Since Σ is compact, {σk} has a convergent subsequence. Without loss of generality, we 

assume that σk σ.→ 

Since 2αk 0, σk σ, by Proposition 1, it follows that σ is a 0-equilibrium of G.• → → 

3 Discontinuous Games 

There are many games in which the utility functions are not continuous (e.g. price competi

tion models, congestion-competition models). For such games existence of a mixed strategy 

equilibrium can be established under some assumptions by using an existence result by Das

gupta and Maskin [1]-[2]. For more on this topic, please refer to Chapters 12.2 and 12.3 of 

Fudenberg and Tirole. 

In the following examples, we consider games with discontinuous utility functions and 

find their mixed strategy equilibria. 

Example 1 (Bertrand Competition with Capacity Constraints): Consider two firms 

that charge prices p1, p2 ∈ [0, 1] per unit of the same good. Assume that there is unit demand 

and all customers choose the firm with the lower price. If both firms charge the same price, 

each firm gets half the demand. All demand has to be supplied. The payoff functions of 

each firm is the profit they make (we assume for simplicity that cost of supplying the good 

is equal to 0 for both firms). 
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(a) Find all pure strategy Nash equilibria. 

We check all possible candidates to see if there is any profitable unilateral deviation: 

–	 p1 = p2 > 0: each of the firms has an incentive to reduce their price to capture 

the whole demand and increase profits. 

–	 p1 < p2: Firm 1 has an incentive to slightly increase his price. 

–	 p1 = p2 = 0: Neither firm can increase profits by changing its price unilaterally. 

Hence (p1, p2) = (0, 0) is the unique pure strategy Nash equilibrium. 

(b) Assume now that each firm has a capacity constraint of 2/3 units of demand (since 

all demand has to be supplied, this implies that when p1 < p2, firm 2 gets 1/3 units 

of demand). Show that there does not exist a pure strategy Nash equilibrium. Find a 

mixed strategy Nash equilibrium. 

It is easy to see in this case that the pure strategy profile (p1, p2) = (0, 0) is no longer 

a pure strategy Nash equilibrium: either firm can increase his price and still have 1/3 

units of demand due to the capacity constraint on the other firm, thus making positive 

profits. 

It can be established using Dasgupta-Maskin result that there exists a mixed strategy 

Nash equilibrium. Let us next proceed to find a mixed strategy Nash equilibrium. We 

focus on symmetric Nash equilibria, i.e., both firms use the same mixed strategy. We 

use the cumulative distribution function F ( ) to represent the mixed strategy used by ·

either firm. It can be seen that the expected payoff of player 1, when he chooses p1 

and firm 2 uses the mixed strategy F ( ), is given by ·

p1	 2 
u1(p1, F ( )) = F (p1) + (1 − F (p1)) p1.·

3	 3

Using the fact that each action in the support of a mixed strategy must yield the same 

payoff to a player at the equilibrium, we obtain for all p in the support of F ( ),·

p 2 −F (p) + p = k, 
3 3
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for some k ≥ 0. From this we obtain:


3k

F (p) = 2 − . 

p 

Note next that the upper support of the mixed strategy must be at p = 1, which 

implies that F (1) = 1. Combining with the preceding, we obtain ⎧ ⎨ 0, if 0 ≤ p ≤ 1 ,
2 

F (p) = ⎩ 
2 − 1 

p , if 1
2 ≤ p ≤ 1, 

1, if p ≥ 1. 

Example 2 (Hotelling Competition): Each of n candidates chooses a position to take on 

the real line in the interval [0,1]. There is a continuum of citizens, whose favorite positions 

are uniformly distributed between [0,1]. A candidate attracts votes of citizens whose favorite 

positions are closer to his position than to the position of any other candidate; if k candidates 

choose the same position, then each receives the fraction 1/k of the votes that the position 

attracts. The payoff of each candidate is his vote share. 

(a) Find all pure strategy Nash equilibria when n = 2. 

(b) Show that there does not exist a pure strategy Nash equilibrium when n = 3.Find a 

mixed strategy Nash equilibrium. 

4	 Uniqueness of a Pure Strategy Equilibrium in Con

tinuous Games 

We have shown in the previous lecture the following result on the existence of a pure strategy 

Nash equilibrium: Given a strategic form game �I, (Si), (ui)�, assume that the strategy 

sets Si are nonempty, convex, and compact sets, ui(s) is continuous in s, and ui(si, s−i) is 

quasiconcave in si. Then the game �I, (Si), (ui)� has a pure strategy Nash equilibrium. 

Then next example shows that even under strict convexity assumptions, there may be 

infinitely many pure strategy Nash equilibria. 

Example 3: Consider a game with 2 players, Si = [0, 1] for i = 1, 2, and the payoffs are 

given by 
2 

u1(s1, s2) = s1s2 − 
s1 ,
2 
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2 

u2(s1, s2) = s1s2 − 
s2 . 
2 

Note that ui(s1, s2) is strictly concave in si. It can be seen in this example that the best 

response correspondences (which are unique-valued) are given by 

B1(s2) = s2, B2(s1) = s1. 

Plotting the best response curves shows that any pure strategy profile (s1, s2) = (x, x) for 

x ∈ [0, 1] is a pure strategy Nash equilibrium. 

We will next establish conditions that guarantee that a strategic form game has a unique 

pure strategy Nash equilibrium. We will follow the development of the classical paper by 

Rosen [4]. 

We first provide some notation and standard results from nonlinear optimization. 

Optimization terminology and background: 

Given a scalar-valued function f : Rn �→ R, we use the notation �f(x) to denote the 

gradient vector of f at point x, i.e., � �T
∂f(x) ∂f(x)�f(x) = , . . . , ,
∂x1 ∂xn 

(recall our convention that all vectors are column vectors). Given a scalar-valued function 

u : 
�I Rmi �→ R, we use the notation �iu(x) to denote the gradient vector of u withi=1 

respect to xi at point x, i.e., 

�iu(x) = 

� 
∂u(x) 
∂x1 

i 

, . . . , 
∂u(x) 
∂xmi 

i 

�T 

. (1) 

We next state necessary conditions for the optimality of a feasible solution of a non

linear optimization problem. These conditions are referred to as the Karush-Kuhn-Tucker 

conditions in the optimization theory literature. 

Theorem 2 (Karush-Kuhn-Tucker conditions) Let x∗ be an optimal solution of the 

optimization problem 

maximize f(x)


subject to gj (x) ≥ 0, j = 1, . . . , r,
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where the cost function f : Rn �→ R and the constraint functions gj : Rn �→ R are continuously 

differentiable. Denote the set of active constraints at x∗ as A(x∗) = {j = 1, . . . , r | gj (x
∗) = 

0}. Assume that the active constraint gradients, �gj (x
∗), j ∈ A(x∗), are linearly independent 

vectors. Then, there exists a nonnegative vector λ∗ ∈ Rr (Lagrange multiplier vector) such 

that 
r

�f(x∗) + λ∗ 
j �gj (x

∗) = 0, 
j=1 

λ∗ 
j gj (x

∗) = 0, ∀ j = 1, . . . , r. (2) 

You can view the preceding theorem as a generalization of the Lagrange multiplier the

orem you might have seen in Calculus for equality constrained optimization problems to 

inequality constrained optimization problems. The condition that the active constraint gra

dients, �gj (x
∗), j ∈ A(x∗), are linearly independent vectors is a regularity condition that 

eliminates “degenerate” cases where there may not exist Lagrange multipliers. These type of 

conditions are referred to as constraint qualifications. You don’t need to worry about these 

conditions for this class. The condition in Eq. (2) implies that if λ∗ 
j > 0, then gj (x

∗) = 0, 

and if gj (x
∗) > 0, then λ∗ 

j = 0. It is therefore referred to as the complementary slackness 

condition and captures loosely the intuitive idea that a multiplier is used only when the 

constraint is active and the problem is locally unconstrained with respect to the inactive 

constraints. 

For convex optimization problems (i.e., minimizing a convex function over a convex con

straint set, or maximizing a concave function over a convex constraint set), we can provide 

necessary and sufficient conditions for the optimality of a feasible solution: 

Theorem 3 Consider the optimization problem 

maximize f(x) 

subject to gj (x) ≥ 0, j = 1, . . . , r, 

where the cost function f : Rn �→ R and the constraint functions gj : Rn �→ R are concave 

functions. Assume also that there exists some x̄ such that gj (x̄) > 0 for all j = 1, . . . , r. Then 

6-9
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a vector x∗ ∈ Rn is an optimal solution of the preceding problem if and only if gj (x
∗) ≥ 0 for 

all j = 1, . . . , r, and there exists a nonnegative vector λ∗ ∈ Rr (Lagrange multiplier vector) 

such that 
r

�f(x∗) + λ∗ 
j �gj (x

∗) = 0, 
j=1 

λ∗ 
j gj (x

∗) = 0, ∀ j = 1, . . . , r. 

Note that the condition that there exists some x̄ such that gj (x̄) > 0 for all j = 1, . . . , r is 

a constraint qualification (referred to as the Slater’s constraint qualification) that is suitable 

for convex optimization problems. 

We now return to the analysis of the uniqueness of a pure strategy equilibrium in strategic 

form games. In order to discuss the uniqueness of an equilibrium, we provide a more explicit 

description of the strategy sets of the players. In particular, we assume that for player i ∈ I, 

the strategy set Si is given by 

Si = {xi ∈ Rmi | hi(xi) ≥ 0}, (3) 

where hi : Rmi �→ R is a concave function. Since hi is concave, it follows that the set Si is �Ia convex set (check as an exercise!). Therefore the set of strategy profiles S = i=1 Si ⊂�I Rmi , being a Cartesian product of convex sets, is a convex set. The following analysis i=1 

can be extended to the case where Si is represented by finitely many concave inequality 

constraints, but we do not do so here for clarity of exposition. 

Given these strategy sets, a vector x∗ ∈ 
�I Rmi is a pure strategy Nash equilibrium if i=1 

and only if for all i ∈ I, x∗ is an optimal solution of the optimization problem i 

maximizeyi∈Rmi ui(yi, x
∗ ) (4)−i

subject to hi(yi) ≥ 0. 

In the following, we use the notation �u(x) to denote 

�u(x) = [�1u1(x), . . . , �I uI (x)]T , (5) 
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[see Eq. (1)]. We next introduce the key condition for uniqueness of a pure strategy Nash 

equilibrium. 

Definition 4 We say that the payoff functions (u1, . . . , uI ) are diagonally strictly concave 

for x ∈ S, if for every x∗, x̄ ∈ S, we have 

(x̄ − x∗)T �u(x∗) + (x∗ − x̄)T �u(x̄) > 0. 

Theorem 4 Consider a strategic form game �I, (Si), (ui)�. For all i ∈ I, assume that 

the strategy sets Si are given by Eq. (3), where hi is a concave function, and there exists 

some x̃i ∈ Rmi such that hi(x̃i) > 0. Assume also that the payoff functions (u1, . . . , uI ) 

are diagonally strictly concave for x ∈ S. Then the game has a unique pure strategy Nash 

equilibrium. 

Proof: Assume that there are two distinct pure strategy Nash equilibria. Since for each 

i ∈ I, both x∗ 
i and x̄i must be an optimal solution for an optimization problem of the 

form (4), Theorem 3 implies the existence of nonnegative vectors λ∗ = [λ∗ 
1, . . . , λI 

∗]T and 

λ̄ = [λ̄1, . . . , λ̄I ]
T such that for all i ∈ I, we have 

�iui(x
∗) + λ∗ 

i �hi(x
∗ 
i ) = 0, (6) 

λ∗ 
i hi(x

∗ 
i ) = 0, (7) 

and 

�iui(x̄) + λ̄i�hi(x̄i) = 0, (8) 

λ̄ihi(x̄i) = 0. (9) 

Multiplying Eqs. (6) and (8) by (x̄i − xi 
∗)T and (x∗ 

i − x̄i)
T respectively, and adding over 

all i ∈ I, we obtain 

0 = (x̄ − x∗)T �u(x∗) + (x∗ − x̄)T �u(x̄) (10) 

+ λi 
∗�hi(x

∗ 
i )

T (x̄i − x∗) + λ̄i�hi(x̄i)
T (x∗ − x̄i)i i �i∈I i∈I 

> λ∗ 
i �hi(xi 

∗)T (x̄i − xi 
∗) + λ̄i�hi(x̄i)

T (x∗ 
i − x̄i), 

i∈I i∈I 
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where to get the strict inequality, we used the assumption that the payoff functions are 

diagonally strictly concave for x ∈ S. Since the hi are concave functions, we have 

∗ 
i )

T (x̄i − x∗ 
i ) ≥ hi(x̄i).hi(x

∗ 
i ) + �hi(x

Using the preceding together with λ
∗ 
i > 0, we obtain for all i,


λi �hi(x
∗ 

i )
T (x̄i − xi )

∗∗ ∗))iλ
i (hi(x̄i) − hi(x
∗≥


λ∗ 
i hi(x̄i)=


≥ 0,


where to get the equality we used Eq. (7), and to get the last inequality, we used the facts


λ
∗ 
i > 0 and hi(x̄i) ≥ 0. Similarly, we have 

λ̄i�hi(x̄i)
T (x∗ 

i − x̄i) ≥ 0. 

Combining the preceding two relations with the relation in (10) yields a contradiction, thus 

concluding the proof. � 

Let U(x) denote the Jacobian of �u(x) [see Eq. (5)]. In particular, if the xi are all 

1-dimensional, then U(x) is given by ⎛
 ⎞

∂2u1(x) ∂2u1(x) 

∂x2
1 ∂x1∂x2 

· · · 
∂2u2(x) .⎜⎜⎝


⎟⎟⎠
U(x) =
 .
 .
.

∂x2∂x1 

. . . 

The next proposition provides a sufficient condition for the payoff functions to be diago

nally strictly concave. 

Proposition 4 For all i ∈ I, assume that the strategy sets Si are given by Eq. (3), where hi 

is a concave function. Assume that the symmetric matrix (U(x)+UT (x)) is negative definite 

for all x ∈ S, i.e., for all x ∈ S, we have 

y T (U(x) + UT (x))y < 0, ∀ y = 0� . 

Then, the payoff functions (u1, . . . , uI ) are diagonally strictly concave for x ∈ S. 
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Proof: Let x∗, x̄ ∈ S. Consider the vector 

x(λ) = λx∗ + (1 − λ)x̄, for some λ ∈ [0, 1]. 

Since S is a convex set, x(λ) ∈ S. 

Because U(x) is the Jacobian of �u(x), we have 

d dx(λ) 
dλ
�u(x(λ)) = U(x(λ)) 

d(λ) 
= U(x(λ))(x∗ − x̄), 

or � 1 

U(x(λ))(x∗ − x̄)dλ = �u(x∗) −�u(x̄). 
0 

Multiplying the preceding by (x̄ − x∗)T yields 

(x̄ − x∗)T �u(x∗) + (x∗ −� 
x̄
1 

)T �u(x̄)

1


= −
2 0 

(x∗ − x̄)T [U(x(λ)) + UT (x(λ))](x∗ − x̄)dλ 

> 0, 

where to get the strict inequality we used the assumption that the symmetric matrix (U(x)+ 

UT (x)) is negative definite for all x ∈ S. � 

Recent work has shown that the uniqueness of a pure strategy Nash equilibrium can be 

established under conditions that are weaker than those given above. This analysis is beyond 

our scope; for more information on this, see the recent papers [6], [7],[8]. 

5 Appendix 

For more on metric spaces, refer to any textbook on real analysis, for example Rudin [5]. For 

completeness, we summarize the basic definitions here. A metric space is a set M together 

with a function d : M × M �→ R, that defines the “distance” d(x, y) between any two points 

x, y in the set. The distance function satisfies the following properties for every x, y, z ∈ M : 

• d(x, y) = d(y, x) ≥ 0, 
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• d(x, y) = 0 if and only if x = y, 

• d(x, y) + d(y, z) ≥ d(x, z). 

In a metric space M , a point y ∈ M is the limit of a sequence of points {xk
k=1 ⊂ M if}∞

and only if the distance d(xk, y) → 0 as k →∞. An open ball of radius � around a point x, 

denoted by B(x, �), is the set of all points in the metric space that have a distance less than 

� from x, i.e., 

B(x, �) = {y | d(x, y) < �}. 

A set S is an open subset of a metric space M if and only if for every x ∈ S, there exists 

some � > 0 such that B(x, �) ⊂ S. A metric space is compact if and only if every collection 

of open sets that “covers” M (i.e., their union includes all of M), has a finite subcollection 

that also covers M . 

When there are infinitely many actions in the set Si, a mixed strategy for player i can 

no longer be described by just listing the probability of each individual action (i.e., by a 

finite dimensional probability vector). For example, suppose that Si is the interval [0, 1]. If 

player i selected his action from a uniform probability distribution over the interval [0,1], 

then each individual action in [0,1] would have zero probability; but the same would be true 

if he selected his action from a uniform probability distribution over the interval [0.5,1]. To 

describe a probability distribution over Si, we must list the probabilities of subsets of Si. 

Unfortunately, for technical reasons, it may be mathematically impossible to consistently 

assign probabilities to all subsets of an infinite set, so some weak restriction is needed on 

the class of subsets whose probabilities can be meaningfully defined. These are called the 

measurable sets. Here, we let the measurable subsets of S and of each set Si be the smallest 

class of subsets that includes all open subsets, all closed subsets, and all finite or countably 

infinite unions and intersections of sets in the class. These are the Borel subsets (and they 

include essentially all subsets that could be defined without the use of very sophisticated 

mathematics). Let Bi denote the set of such measurable or Borel subsets of Si. 

Let Σi denote the set of probability distributions over Si, i.e., σi ∈ Σi if and only if σi is 

a function that assigns a nonnegative number σi(Q) to each Q that is a Borel subset of Si, 
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� � 
 � 

�	 � 

� 

σ(Si) = 1, and for any countable collection (Qk)∞k=1 of pairwise-disjoint Borel subsets of Si, 

∞ ∞

σi Qk = σi(Q
k). 

k=1 k=1 

We define convergence for mixed strategies by assigning the weak topology to Σi. Two 

implications of this topology are important for our purposes: 

•	 The set of probability distributions Σi is a compact metric space, i.e., every sequence 

{σi
k} ⊂ Σi has a convergent subsequence. 

•	 A sequence {σi
k} ⊂ Σi of mixed strategies converges to σi ∈ Σi if and only if for all 

continuous functions f : Si �→ R, we have 

lim f(si)dσi
k(si) = f(si)dσi(si). (11) 

k→∞ Si Si 

The preceding condition asserts that if s̃i
k is a random strategy drawn from Si according to the 

σk distribution, and s̃i is a random strategy drawn from Si according to the σi distribution,i 

then the expected value of f(s̃i
k) must converge to the expected value of f(s̃i) as k →∞. 

A function g : S �→ R is called (Borel) measurable if for every scalar t, the set {x ∈ 

S | g(x) ≥ t} is a Borel subset of S. A function g : S �→ R is bounded if there exists 

some scalar K such that |g(x)| ≤ K for all x ∈ C. To be able to define expected utilities, 

we must require that player’s utility functions are measurable and bounded in this sense. 

Note that this assumption is weaker than the continuity of the utility functions. With �Ithis assumption, the utility functions ui are extended from S = j=1 Sj to the space of �Iprobability distributions Σ = j=1 Σj as follows: 

ui(σ) = ui(s)dσ(s), 
C 

where σ ∈ Σ. 
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