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Game Theory: Lecture 12 Introduction 

Outline 

Extensive Form Games with Perfect Information 

Backward Induction and Subgame Perfect Nash Equilibrium 

One-stage Deviation Principle 

Applications 

Reading: 

Fudenberg and Tirole, Chapter 3 (skim through Sections 3.4 and 
3.6), and Sections 4.1-4.2. 
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Game Theory: Lecture 12 Extensive Form Games 

Extensive Form Games


We have studied strategic form games which are used to model 
one-shot games in which each player chooses his action once and for 
all simultaneously. 

In this lecture, we will study extensive form games which model

multi-agent sequential decision making.

Our focus will be on multi-stage games with observed actions where: 

All previous actions are observed, i.e., each player is perfectly informed 
of all previous events. 
Some players may move simultaneously at some stage k. 

Extensive form games can be conveniently represented by game

trees.


Additional component of the model, histories (i.e., sequences of

action profiles).
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Game Theory: Lecture 12 Extensive Form Games 

Example 1 – Entry Deterrence Game: 

Entrant

In Out

A F

Incumbent

(2,1) (0,0)

(1,2)

There are two players. 

Player 1, the entrant, can choose to enter the market or stay out. Player 2, 
the incumbent, after observing the action of the entrant, chooses to 
accommodate him or fight with him. 

The payoffs for each of the action profiles (or histories) are given by the pair 
(x , y ) at the leaves of the game tree: x denotes the payoff of player 1 (the 
entrant) and y denotes the payoff of player 2 (the incumbent). 
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Player 1

Invest Not Invest

Player 2

Cournot Game I
c1 = 0
c2 = 2

Cournot Game II
c1 = 2
c2 = 2

Game Theory: Lecture 12 Extensive Form Games 

Example 2 – Investment in Duopoly 

There are two players in the market. 

Player 1 can choose to invest or not invest. After player 1 chooses his

action, both players engage in a Cournot competition.


If player 1 invests, then they will engage in a Cournot game with c1 = 0 and 
c2 = 2. 

Otherwise, they will engage in a Cournot game with c1 = c2 = 2. 

We can also assume that there is a fixed cost of f for player 1 to invest. 
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Game Theory: Lecture 12 Extensive Form Games 

Extensive Form Game Model


A set of players, I = {1, . . . , I }. 

Histories: A set H of sequences which can be finite or infinite.

h0 = ∅ initial history

a0 = (a0

1, . . . , a0 
I ) stage 0 action profile


h1 = a0 history after stage 0

. . . . . .

hk+1 = (a0 , a1 , . . . , ak ) history after stage k


If the game has a finite number (K + 1) of stages, then it is a finite

horizon game.

Let Hk = {hk } be the set of all possible stage k histories.

Then HK +1 is the set of all possible terminal histories, and


K +1H = ∪k=0 H
k is the set of all possible histories. 
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Game Theory: Lecture 12 Extensive Form Games 

Extensive Form Game Model


Pure strategies for player i is defined as a contingency plan for every possible 
history hk . 

Let Si (Hk ) = 
� 

hk ∈Hk Si (hk ) be the set of actions available to player i 
at stage k. 
Let sk : Hk → Si (Hk ) such that si (hk ) ∈ Si (hk ).i 
Then the pure strategy of player i is the set of sequences 

k Ksi = {si }k=0, i.e., a pure strategy of a player is a collection of maps 
from all possible histories into available actions. 
Observe that the path of strategy profile s will be a0 = s0(h0), 
a1 = s1(a0), a2 = s2(a0 , a1), and so on. 

Preferences are defined on the outcome of the game HK +1 . We can 
represent the preferences of player i by a utility function ui : HK +1 R. 

0 k 
→

As the strategy profile s determines the path a , . . . , a and hence hK +1, we 
will denote ui (s) as the payoff to player i under strategy profile s. 
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Game Theory: Lecture 12 Extensive Form Games 

Example: 

Strategies in Extensive Form Games 

Player 1

C D

E F G H

Player 2

(2,1) (3,0) (0,2) (1,3)

Player 1’s strategies: s1 : H0 = ∅ S1 = {C , D}; two possible strategies: →
C,D 

Player 2’s strategies: s2 : H1 = {{C }, {D}} → S2; four possible strategies: 
which we can represent as EG , EH, FG and FH. 

If s = (C , EG ), then the outcome will be {C , E }. On the other hand, if the 
strategy is s = (D, EG ), the outcome will be {D, G }. 
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Game Theory: Lecture 12 Extensive Form Games 

Strategies in Extensive Form Games (continued) 

Consider the following two-stage extensive form version of matching 
pennies. 

Player 1

H T

H T H T

Player 2

(-1,1) (1,-1) (1,-1) (-1,1)

How many strategies does player 2 have? 
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1

2

3

4

Game Theory: Lecture 12 Extensive Form Games 

Strategies in Extensive Form Games (continued) 

Recall: strategy should be a complete contingency plan. 

Therefore: player 2 has four strategies: 

heads following heads, heads following tails HH; 
heads following heads, tails following tails HT; 
tails following heads, tails following tails TT; 
tails following heads, heads following tails TH. 
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Game Theory: Lecture 12 Extensive Form Games 

Strategies in Extensive Form Games (continued) 

Therefore, from the extensive form game we can go to the strategic 
form representation. For example: 

Player 1/Player 2 HH HT TT TH 
heads (−1, 1) (−1, 1) (1, −1) (1, −1) 
tails (1, −1) (−1, 1) (−1, 1) (1, −1) 

So what will happen in this game? 
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Game Theory: Lecture 12 Extensive Form Games 

Strategies in Extensive Form Games (continued) 

Can we go from strategic form representation to an extensive form 
representation as well? 

To do this, we need to introduce information sets: 

Information sets model the information players have when they are 
choosing their actions. 
They can be viewed as a generalization of the idea of a history. 
The information sets, h ∈ H, partition the nodes of the game tree: the 
interpretation of the information set h(x) containing node x is that the 
player who is choosing an action at x is uncertain if he is at x or at 
some other x � ∈ h(x). 
We require that if x � ∈ h(x), then the same player moves at x and x � 

and also that A(x) = A(x �). 

A game has perfect information if all its information sets are singletons (i.e., 
all nodes are in their own information set). 
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Game Theory: Lecture 12 Extensive Form Games 

Strategies in Extensive Form Games (continued) 

The following two extensive form games are representations of the 
simultaneous-move matching pennies. 

The loops represent the information sets of the players who move at that 
stage. These are imperfect information games. 

These games represent exactly the same strategic situation: each player 
chooses his action not knowing the choice of his opponent. 

Note: For consistency, first number is still player 1’s payoff. 

Player 1

Player 2

H T

H T H T

(-1,1) (1,-1) (1,-1) (-1,1)

Player 2

H T

H T H T

Player 1

(-1,1) (1,-1) (1,-1) (-1,1)
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Game Theory: Lecture 12 Extensive Form Games 

Entry Deterrence Game 

Entrant

In Out

A F

Incumbent

(2,1) (0,0)

(1,2)

Equivalent strategic form representation: 

Entrant\Incumbent 
In 

Out 

Accommodate 
(2, 1) 
(1, 2) 

Fight 
(0, 0) 
(1, 2) 

Two pure Nash equilibria: (In,A) and (Out,F). 
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Game Theory: Lecture 12 Extensive Form Games 

Are These Equilibria Reasonable? 

The equilibrium (Out,F) is sustained by a noncredible threat of the 
monopolist. 

Equilibrium notion for extensive form games: Subgame Perfect 
(Nash) Equilibrium. 

It requires each player’s strategy to be “optimal” not only at the start 
of the game, but also after every history. 

For finite horizon games, found by backward induction. 

For infinite horizon games, characterization in terms of one-stage 
deviation principle. 
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Game Theory: Lecture 12 Extensive Form Games 

Subgames 

To define subgame perfection formally, we first define the idea of a 
subgame. 

Informally, a subgame is a portion of a game that can be analyzed as a 
game in its own right. 

Recall that a game G is represented by a game tree. Denote the set 
of nodes of G by VG . 

Recall that history hk denotes the play of a game after k stages. In a 
perfect information game, each node x ∈ VG corresponds to a unique 
history hk and vice versa. This is not necessarily the case in imperfect 
information games. 
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Game Theory: Lecture 12 Extensive Form Games 

Subgames (continued) 

Definition (Subgames) 

A subgame G � of an extensive form game G consists of a single node and all its 
successors in G, with the property that if x �inVG � and x �� ∈ h(x �), then 
x �� ∈ VG � . The information sets and payoffs of the subgame are inherited from 
the original game. 

The definition requires that all successors of a node is in the subgame and 
that the subgame does not “chop up” any information set. 

This ensures that a subgame can be analyzed in its own right. 
This implies that a subgame starts with a node x with a singleton 
information set, i.e., h(x) = x . 

In perfect information games, subgames coincide with nodes or stage k 
histories hk of the game. In this case, we use the notation hk or G (hk ) to 
denote the subgame. 

A restriction of a strategy s to subgame G �, s G � is the action profile implied |
by s in the subgame G �. 
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Player 1

H T

H T H T

Player 2

(-1,1) (1,-1) (1,-1) (-1,1)

Game Theory: Lecture 12 Extensive Form Games 

Subgames: Examples 

Recall the two-stage extensive-form version of the matching pennies 
game 

In this game, there are two proper subgames and the game itself 
which is also a subgame, and thus a total of three subgames. 
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Game Theory: Lecture 12 Extensive Form Games 

Subgame Perfect Equilibrium 

Definition 

(Subgame Perfect Equilibrium) A strategy profile s∗ is a Subgame 
Perfect Nash equilibrium (SPE) in game G if for any subgame G � of G, 
s∗|G � is a Nash equilibrium of G �. 

Loosely speaking, subgame perfection will remove noncredible threats, 
since these will not be Nash equilibria in the appropriate subgames. 

In the entry deterrence game, following entry, F is not a best

response, and thus not a Nash equilibrium of the corresponding

subgame. Therefore, (Out,F) is not a SPE.


How to find SPE? One could find all of the Nash equilibria, for 
example as in the entry deterrence game, then eliminate those that 
are not subgame perfect. 

But there are more economical ways of doing it. 
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Game Theory: Lecture 12 Extensive Form Games 

Backward Induction


Backward induction refers to starting from the last subgames of a 
finite game, then finding the best response strategy profiles or the 
Nash equilibria in the subgames, then assigning these strategies 
profiles and the associated payoffs to be subgames, and moving 
successively towards the beginning of the game. 

Entrant

In Out

A F

Incumbent

(2,1) (0,0)

(1,2)
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Game Theory: Lecture 12 Extensive Form Games 

Backward Induction (continued) 

Theorem 

Backward induction gives the entire set of SPE. 

Proof: backward induction makes sure that in the restriction of the 
strategy profile in question to any subgame is a Nash equilibrium. 

Backward induction is straightforward for games with perfect 
information and finite horizon. 

For imperfect information games, backward induction proceeds 
similarly: we identify the subgames starting from the leaves of the 
game tree and replace it with one of the Nash equilibrium payoffs in 
the subgame. 

For infinite horizon games: we will rely on a useful characterization of 
the subgame perfect equilibria given by the “one stage deviation 
principle.” 
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Game Theory: Lecture 12 Extensive Form Games 

Existence of Subgame Perfect Equilibria 

Theorem 

Every finite perfect information extensive form game G has a pure strategy 
SPE. 

Proof: Start from the end by backward induction and at each step one 
strategy is best response. 

Theorem 

Every finite extensive form game G has a SPE. 

Proof: Same argument as the previous theorem, except that some 
subgames need not have perfect information and may have mixed strategy 
equilibria. 
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Game Theory: Lecture 12 One-stage Deviation Principle 

One-stage Deviation Principle 

Focus on multi-stage games with observed actions (or perfect information 
games). 

One-stage deviation principle is essentially the principle of optimality of 
dynamic programming. 

We first state it for finite horizon games. 
Theorem (One-stage deviation principle) 

For finite horizon multi-stage games with observed actions , s∗ is a subgame 
perfect equilibrium if and only if for all i , t and ht , we have 

ui (si 
∗ , s−

∗ 
i |ht ) ≥ ui (si , s−

∗ 
i |ht ) 

for all si satisfying 
si (ht ) �= si 

∗(ht ), 

si |ht (ht+k ) = si 
∗
|ht (ht+k ), for all k > 0, and all ht+k ∈ G (ht ). 

Informally, s is a subgame perfect equilibrium (SPE) if and only if no player i 
can gain by deviating from s in a single stage and conforming to s thereafter. 
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Game Theory: Lecture 12 One-stage Deviation Principle 

One-stage Deviation Principle for Infinite Horizon Games 

The proof of one-stage deviation principle for finite horizon games relies on 
the idea that if a strategy satisfies the one stage deviation principle then 
that strategy cannot be improved upon by a finite number of deviations. 

This leaves open the possibility that a player may gain by an infinite 
sequence of deviations, which we exclude using the following condition. 

Definition 

Consider an extensive form game with an infinite horizon, denoted by G ∞ . Let h 
denote an ∞-horizon history, i.e., h = (a0 , a1 , a2 ...), is an infinite sequence of 
actions. Let ht = (a0 , ...at−1) be the restriction to first t periods. The game G ∞ 

is continuous at infinity if for all players i , the payoff function ui satisfies 

˜
sup 

˜
|ui (h) − ui (h̃)| → 0 as t → ∞. 

h,h s.t. ht =ht 
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Game Theory: Lecture 12 One-stage Deviation Principle 

One-stage Deviation Principle for Infinite Horizon Games 

The continuity at infinity condition is satisfied when the overall payoffs are a 
discounted sum of stage payoffs, i.e., 

ui = 
∞

∑ δt
i gi

t (a t ), 
t=0 

(where gi
t (at ) are the stage payoffs, the positive scalar δi < 1 is a discount 

factor), and the stage payoff functions are uniformly bounded, i.e., there 
exists some B such that maxt,at |gi

t (at )| < B. 
Theorem 

Consider an infinite-horizon game, G ∞, that is continuous at infinity. Then, the 
one stage deviation principle holds, i.e., the strategy profile s∗ is an SPE if and 
only if for all i , ht , and t, we have 

ui (si 
∗ , s−

∗ 
i |ht ) ≤ ui (si , s−

∗ 
i |ht ), 

for all si that satisfies si (ht ) �= si 
∗(ht ) and si |ht (ht+k ) = si 

∗|ht (ht+k ) for all 
ht+k ∈ G (ht ) and for all k > 0. 
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Game Theory: Lecture 12 Applications 

Examples: Value of Commitment 

Consider the entry deterrence game, but with a different timing as 
shown in the next figure. 

Entrant

Incumbent

In Out

A F

(2,1) (1,2) (0,0)

In Out

(1,2)

Note: For consistency, first number is still the entrant’s payoff. 
This implies that the incumbent can now commit to fighting (how 
could it do that?). 
It is straightforward to see that the unique SPE now involves the

incumbent committing to fighting and the entrant not entering.

This illustrates the value of commitment. 
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Game Theory: Lecture 12 Applications 

Examples: Stackleberg Model of Competition 

Consider a variant of the Cournot model where player 1 chooses its quantity 
q1 first, and player 2 chooses its quantity q2 after observing q1. Here, player 
1 is the Stackleberg leader. 

Suppose again that both firms have marginal cost c and the inverse demand 
function is given by P (Q) = α − βQ, where Q = q1 + q2, where α > c . 

This is a dynamic game, so we should look for SPE. How to do this? 

Backward induction—this is not a finite game, but all we have seen so far 
applies to infinite games as well. 

Look at a subgame indexed by player 1 quantity choice, q1. Then player 2’s 
maximization problem is essentially the same as before 

max π2 (q1, q2) = [P (Q) − c ] q2 
q2≥0 

= [α − β (q1 + q2) − c ] q2. 
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Game Theory: Lecture 12 Applications 

Stackleberg Competition (continued) 

This gives best response 

α − c − βq1 q2 = . 
2β 

Now the difference is that player 1 will choose q1 recognizing that player 2 
will respond with the above best response function. 

Player 1 is the Stackleberg leader and player 2 is the follower. 

This means player 1’s problem is 

maximizeq1≥0 π1 (q1, q2) = [P (Q) − c ] q1 

subject to q2 = 
α − c − βq1 . 

2β 

Or � � � � 

max α − β q1 + 
α − c − βq1 − c q1. 

q1≥0 2β 
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Game Theory: Lecture 12 Applications 

Stackleberg Competition (continued) 

The first-order condition is 

α − c − βq1 β 
= 0,α − β q1 + 

2β 
− c − 

2 
q1 

which gives 

And thus 

= 
α − cS q .1 2β 

α − c 
q = < q

4β 
S 
2 

S 
1 

Why lower output for the follower? 

S 

Total output is 

1 + q S
3 (α − c)

QS = q 2 =
 ,
4β 

which is greater than Cournot output. Why? 
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