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Game Theory: Lecture 15 Introduction 

Outline


Repeated Games (perfect monitoring) 
The problem of cooperation 
Finitely-repeated prisoner’s dilemma 
Infinitely-repeated games and cooperation 

Folk Theorems 

Reference: 

Fudenberg and Tirole, Section 5.1. 
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Game Theory: Lecture 15 Introduction 

Prisoners’ Dilemma 

How to sustain cooperation in the society? 

Recall the prisoners’ dilemma, which is the canonical game for 
understanding incentives for defecting instead of cooperating. 

Cooperate Defect 
Cooperate 1, 1 −1, 2 

Defect 2, −1 0, 0 

Recall that the strategy profile (D, D) is the unique NE. In fact, D 
strictly dominates C and thus (D, D) is the dominant equilibrium. 

In society, we have many situations of this form, but we often observe 
some amount of cooperation. 

Why? 
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Game Theory: Lecture 15 Introduction 

Repeated Games 

In many strategic situations, players interact repeatedly over time. 

Perhaps repetition of the same game might foster cooperation. 

By repeated games, we refer to a situation in which the same stage game 
(strategic form game) is played at each date for some duration of T periods. 

Such games are also sometimes called “supergames”. 

We will assume that overall payoff is the sum of discounted payoffs at each 
stage. 

Future payoffs are discounted and are thus less valuable (e.g., money 
and the future is less valuable than money now because of positive 
interest rates; consumption in the future is less valuable than 
consumption now because of time preference). 

We will see in this lecture how repeated play of the same strategic game 
introduces new (desirable) equilibria by allowing players to condition their 
actions on the way their opponents played in the previous periods. 
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Game Theory: Lecture 15 Introduction 

Discounting 

We will model time preferences by assuming that future payoffs are 
discounted proportionately (“exponentially”) at some rate δ ∈ [0, 1), 
called the discount rate. 

For example, in a two-period game with stage payoffs given by u1 and 
u2, overall payoffs will be 

U = u 1 + δu 2 . 

With the interest rate interpretation, we would have 

1 
δ = ,

1 + r 

where r is the interest rate. 
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Game Theory: Lecture 15 Introduction 

Mathematical Model 

More formally, imagine that I players playing a strategic form game 
G = �I , (Ai )i ∈I , (gi )i∈I � for T periods. 

At each period, the outcomes of all past periods are observed by all players 
⇒ perfect monitoring 

Let us start with the case in which T is finite, but we will be particularly 
interested in the case in which T = ∞. 

Here Ai denotes the set of actions at each stage, and 

gi : A R,→ 

where A = A1 × · · · × AI . 

That is, gi ai
t , at is the stage payoff to player i when action profile � � −i


at = ai
t , at is played.
−i 
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Game Theory: Lecture 15 Introduction 

Mathematical Model (continued) 

We use the notation a = {at } T

T 
=0 to denote the sequence of action profiles. t

We use the notation α = {αt }t=0 to be the profile of mixed strategies. 

The payoff to player i in the repeated game 

T 
ui (a) = ∑ δt gi (ai

t , a t )−i 
t=0 

where δ ∈ [0, 1).


We denote the T -period repeated game with discount factor δ by G T (δ).
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Game Theory: Lecture 15 Introduction 

Finitely-Repeated Prisoners’ Dilemma 

Recall 

Cooperate Defect 
Cooperate 1, 1 −1, 2 

Defect 2, −1 0, 0 

What happens if this game was played T < ∞ times? 

We first need to decide what the equilibrium notion is. Natural 
choice, subgame perfect Nash equilibrium (SPE). 

Recall: SPE backward induction. ⇐⇒ 

Therefore, start in the last period, at time T . What will happen? 
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Game Theory: Lecture 15 Introduction 

Finitely-Repeated Prisoners’ Dilemma (continued) 

In the last period,“defect” is a dominant strategy regardless of the 
history of the game. So the subgame starting at T has a dominant 
strategy equilibrium: (D, D). 
Then move to stage T − 1. By backward induction, we know that at

T , no matter what, the play will be (D, D). Then given this, the

subgame starting at T − 1 (again regardless of history) also has a

dominant strategy equilibrium.


With this argument, we have that there exists a unique SPE: (D, D)

at each date.


In fact, this is a special case of a more general result.
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Game Theory: Lecture 15 Introduction 

Equilibria of Finitely-Repeated Games 

Theorem 

Consider repeated game G T (δ) for T < ∞. Suppose that the stage game 
G has a unique pure strategy equilibrium a∗. Then G T has a unique SPE. 
In this unique SPE, at = a∗ for each t = 0, 1, ..., T regardless of history. 

Proof: The proof has exactly the same logic as the prisoners’ dilemma 
example. By backward induction, at date T , we will have that (regardless 
of history) aT = a∗. Given this, then we have aT −1 = a∗, and continuing 
inductively, at = a∗ for each t = 0, 1, ..., T regardless of history. 
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Game Theory: Lecture 15 Infinitely-Repeated Games 

Infinitely-Repeated Games 

Now consider the infinitely-repeated game G ∞, i.e., players play the 
game repeatedly at times t 
The notation a = {at 

action profiles. 

∞ 
t=0} 

= 0, 1, . . ..

now denotes the (infinite) sequence of


A period-t history is ht = {a0 , . . . , at−1} (action profiles at all 
periods before t), and the set of all period-t histories is Ht . 
A pure strategy for player i is si = {sit }, where si

t : Ht Ai→
The payoff to player i for the entire repeated game is then 

ui (a) = (1 − δ) 
∞

∑ 
t=0 

δt gi (ai
t , a−

t
i ) 

where, again, δ ∈ [0, 1).

Note: this summation is well defined because δ < 1.

The term (1 − δ) is introduced as a normalization, to measure stage

and repeated game payoffs in the same units.


The normalized payoff of having a utility of 1 per stage is 1. 
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Game Theory: Lecture 15 Infinitely-Repeated Games 

Trigger Strategies 

In infinitely-repeated games we can consider trigger strategies. 

A trigger strategy essentially threatens other players with a “worse,” 
punishment, action if they deviate from an implicitly agreed action profile. 

A non-forgiving trigger strategy (or grim trigger strategy) s would involve 
this punishment forever after a single deviation. 

A non-forgiving trigger strategy (for player i) takes the following form: 

a for all τ < t¯
i if aτ =ai �

āi if aτ =

a t = 

Here a is the implicitly agreed action profile and ai 

This strategy is non-forgiving since a single deviation from

¯ is the punishment action. 

ā induces player i 
to switch to ai forever. 

¯ for some τ < ta 
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Game Theory: Lecture 15 Infinitely-Repeated Games 

Cooperation with Trigger Strategies in the Repeated 
Prisoners’ Dilemma 

Recall 

Cooperate Defect 
Cooperate 1, 1 −1, 2 

Defect 2, −1 0, 0 

Suppose this game is played infinitely often. 

Is “Both defect in every period” still an SPE outcome? 

Suppose both players use the following non-forgiving trigger strategy s∗: 

Play C in every period unless someone has ever played D in the past 
Play D forever if someone has played D in the past. 

We next show that the preceding strategy is an SPE if δ ≥ 1/2 using 
one-stage deviation principle. 
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Game Theory: Lecture 15 Infinitely-Repeated Games 

Cooperation with Trigger Strategies in the Repeated 
Prisoners’ Dilemma 

Step 1: cooperation is best response to cooperation. 

Suppose that there has so far been no D. Then given s∗ being played 
by the other player, the payoffs to cooperation and defection are: 

Payoff from C : (1 − δ)[1 + δ + δ2 + ] = (1 − δ) × 1 = 1 
Payoff from D : (1 − δ)[2 + 0 + 0 + 

· · · 
] = 2(1 − δ) 

1−δ 
· · · 

Cooperation better if 2(1 − δ) ≥ 1. 
This shows that for δ ≥ 1/2, deviation to defection is not profitable. 
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Game Theory: Lecture 15 Infinitely-Repeated Games 

Cooperation with Trigger Strategies in the Repeated 
Prisoners’ Dilemma (continued) 

Step 2: defection is best response to defection. 

Suppose that there has been some D in the past, then according to s∗, 
the other player will always play D. Against this, D is a best response. 

This argument is true in every subgame, so s∗ is a subgame perfect 
equilibrium. 

Note: Cooperating in every period would be a best response for a 
player against s∗. But unless that player herself also plays s∗, her 
opponent would not cooperate. Thus SPE requires both players to 
use s∗. 
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Game Theory: Lecture 15 Infinitely-Repeated Games 

Remarks


Cooperation is an equilibrium, but so are many other strategy profiles

(depending on the size of the discount factor)


Multiplicity of equilibria endemic in repeated games. 

If a∗ is the NE of the stage game (i.e., it is a static equilibrium), then the 
strategies “each player, plays ai 

∗” form an SPE. 

Note that with these strategies, future play of the opponent is 
independent of how I play today, therefore, the optimal play is to 
maximize the current payoff, i.e., play a static best response.) 

Sets of equilibria for finite and infinite horizon versions of the “same game” 
can be quite different. 

Multiplicity of equilibria in prisoner’s dilemma only occurs at T = ∞. 
In particular, for any finite T (and thus by implication for T ∞),→
prisoners’ dilemma has a unique SPE. 
Why? The set of Nash equilibria is an upper semicontinuous 
correspondence in parameters. It is not necessarily lower 
semicontinuous. 
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Game Theory: Lecture 15 Infinitely-Repeated Games 

Repetition Can Lead to Bad Outcomes 

The following example shows that repeated play can lead to worse outcomes 
than in the one shot game: 

A B C 
A 2, 2 2, 1 0, 0 
B 1, 2 1, 1 −1, 0 
C 0, 0 0, −1 −1, −1 

For the game defined above, the action A strictly dominates B, C for both 
players, therefore the unique Nash equilibrium of the stage game is (A, A). 

If δ ≥ 1/2, this game has an SPE in which (B, B) is played in every period. 

It is supported by a slightly more complicated strategy than grim trigger: 

I. Play B in every period unless someone deviates, then go to II. 
II. Play C . If no one deviates go to I. If someone deviates stay in II. 
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Game Theory: Lecture 15 Folk Theorems 

Folk Theorems


In fact, it has long been a “folk theorem” that one can support 
cooperation in repeated prisoners’ dilemma, and other 
“non-one-stage“equilibrium outcomes in infinitely-repeated games 
with sufficiently high discount factors. 

These results are referred to as “folk theorems” since they were 
believed to be true before they were formally proved. 

Here we will see a relatively strong version of these folk theorems. 
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Game Theory: Lecture 15 Folk Theorems 

Feasible Payoffs 

Consider stage game G = �I , (Ai )i∈I , (gi )i∈I � and infinitely-repeated

game G ∞ (δ).

Let us introduce the set of feasible payoffs:


V = Conv{v ∈ RI | there exists a ∈ A such that g (a) = v }. 

That is, V is the convex hull of all I - dimensional vectors that can be 
obtained by some action profile. Convexity here is obtained by public 
randomization. 

Note: V is not equal to {v ∈ RI | there exists α ∈ Σ such that 
g (α) = v }, where Σ is the set of mixed strategy profiles in the stage 
game. 
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Game Theory: Lecture 15 Folk Theorems 

Minmax Payoffs 

Minmax payoff of player i : the lowest payoff that player i ’s opponent 
can hold him to: 

v i = min max gi (αi , α−i ) . 
α−i αi 

The player can never receive less than this amount. 

Minmax strategy profile against i : � � 

m i −i = arg min
α−i 

max 
αi 

gi (αi , α−i ) 

iFinally, let m denote the strategy of player i such that
i 
gi (mi

i , m−
i

i ) = v i . 

20 



Game Theory: Lecture 15 Folk Theorems 

Example 

Consider 

L R 
U −2, 2 1, −2 
M 1, −2 −2, 2 
D 0, 1 0, 1 

To compute v1, let q denote the probability that player 2 chooses 
action L. 

Then player 1’s payoffs for playing different actions are given by: 

U 1 − 3q→
M → −2 + 3q 
D 0→ 
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Game Theory: Lecture 15 Folk Theorems 

Example 

Therefore, we have


v1 = min [max{1 − 3q, −2 + 3q, 0}] = 0,

0≤q≤1


and m2
1 ∈ [ 13 , 

2 ].
3 

Similarly, one can show that: v2 = 0, and m1
2 = (1/2, 1/2, 0) is the 

unique minimax profile. 
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Game Theory: Lecture 15 Folk Theorems 

Minmax Payoff Lower Bounds 

Theorem 

Let α be a (possibly mixed) Nash equilibrium of G and gi (α) be the 
payoff to player i in equilibrium α. Then


gi (α) ≥ v i .


Let σ be a (possibly mixed) Nash equilibrium of G ∞ (δ) and ui (σ) 
be the payoff to player i in equilibrium σ. Then


ui (σ) ≥ v i .


Proof: Player i can always guarantee herself 
v i = mina [maxai ui (ai , a−i )] in the stage game and also in each stage −i 

of the repeated game, since v i = maxai [mina ui (ai , a−i )], meaning that −i 

she can always achieve at least this payoff against even the most 
adversarial strategies. 
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Game Theory: Lecture 15 Folk Theorems 

Folk Theorems


Definition 

A payoff vector v ∈ RI is strictly individually rational if vi > v i for all i . 

Theorem 

(Nash Folk Theorem) If (v1, . . . , vI ) is feasible and strictly individually 
rational, then there exists some δ < 1 such that for all δ > δ, there is a 
Nash equilibrium of G ∞(δ) with payoffs (v1, · · · , vI ). 
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Game Theory: Lecture 15 Folk Theorems 

Proof 

Suppose for simplicity that there exists an action profile 
a = (a1, [otherwise, we have to consider · · · , aI ) s.t. gi (a) = vi 

mixed strategies, which is a little more involved]. 

Let mi these the minimax strategy of opponents of i and mi be i ’s−i i 
best response to mi 

−i . 

Now consider the following grim trigger strategy. 

For player i : Play (a1, · · · , aI ) as long as no one deviates. If some 
player j deviates, then play mi

j thereafter. 

We next check if player i can gain by deviating form this strategy 
profile. If i plays the strategy, his payoff is vi . 
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Game Theory: Lecture 15 Folk Theorems 

Proof (continued) 

If i deviates from the strategy in some period t, then denoting 
vi = maxa gi (a), the most that player i could get is given by: 

(1 − δ) vi + δvi + + δt−1 vi + δt v i + δt+1 v i + δt+2 v i + .· · ·	 · · · 

Hence, following the suggested strategy will be optimal if 

vi 1 − δt δt+1


1 − δ 
≥ 

1 − δ 
vi + δt v i + 

1 − δ 
v i ,


thus if


vi	 ≥ 1 − δt vi + δt (1 − δ) v i + δt+1 v i 

= vi − δt [vi − (1 − δ)v i − δv i + (δvi − δvi )]. 

The expression in the bracket is non-negative for any 

δ ≥ δ ≡ max 
v i − vi 

. 
i v i − v i 

This completes the proof. 
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Game Theory: Lecture 15 Folk Theorems 

Problems with Nash Folk Theorem


The Nash folk theorem states that essentially any payoff can be 
obtained as a Nash Equilibrium when players are patient enough. 
However, the corresponding strategies involve this non-forgiving 
punishments, which may be very costly for the punisher to carry out 
(i.e., they represent non-credible threats). 
This implies that the strategies used may not be subgame perfect. 
The next example illustrates this fact. 

L (q) R (1 − q) 
U 6, 6 0, −100 
D 7, 1 0, −100 

The unique NE in this game is (D, L). It can also be seen that the 
minmax payoffs are given by 

v1 = 0, v2 = 1, 

and the minmax strategy profile of player 2 is to play R. 
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Game Theory: Lecture 15 Folk Theorems 

Problems with the Nash Folk Theorem (continued) 

Nash Folk Theorem says that (6,6) is possible as a Nash equilibrium 
payoff of the repeated game, but the strategies suggested in the proof 
require player 2 to play R in every period following a deviation. 

While this will hurt player 1, it will hurt player 2 a lot, it seems 
unreasonable to expect her to carry out the threat. 

Our next step is to get the payoff (6, 6) in the above example, or 
more generally, the set of feasible and strictly individually rational 
payoffs as subgame perfect equilibria payoffs of the repeated game. 

28 



MIT OpenCourseWare
http://ocw.mit.edu 

6.254 Game Theory with Engineering Applications 
Spring 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Game Theory: Lecture 15
	Introduction
	Repeated Games
	Infinitely-Repeated Games
	Folk Theorems


