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Game Theory: Lecture 18 Introduction 

Outline


Bayesian Nash Equilibria. 

Auctions. 

Extensive form games of incomplete information. 

Perfect Bayesian (Nash) Equilibria. 
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Game Theory: Lecture 18 Incomplete Information 

Incomplete Information 

In the last lecture, we studied incomplete information games where 
one agent is unsure about the payoffs or preferences of others. 

Examples abundant: 

Bargaining, auctions, market competition, signaling games, social 
learning. 

We modeled such games as Bayesian games that consist of 

A set of players I ;

A set of actions (pure strategies) for each player i : Si ;

A set of types for each player i : θi ∈ Θi ;

A payoff function for each player i : ui (s1, . . . , sI , θ1, . . . , θI );

A (joint) probability distribution p(θ1, . . . , θI ) over types (or

P(θ1, . . . , θI ) when types are not finite).
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Game Theory: Lecture 18 Bayesian Games 

Bayesian Games 

Importantly, throughout in Bayesian games, the strategy spaces, the 
payoff functions, possible types, and the prior probability distribution 
are assumed to be common knowledge. 

Definition 

A (pure) strategy for player i is a map si : Θi Si prescribing an action →
for each possible type of player i . 

Given p(θ1, . . . , θI ), player i can compute the conditional distribution 
p(θ−i | θi ) using Bayes rule, where θ−i = (θ1, . . . , θi−1, θi+1, . . . , θI ). 
Player i knows her own type and evaluates her expected payoffs

according to the conditional distribution p(θ−i | θi ).
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Game Theory: Lecture 18 Bayesian Games 

Bayesian Nash Equilibria 

Definition (Bayesian Nash Equilibrium) 

The strategy profile s( ) is a (pure strategy) Bayesian Nash equilibrium if ·
for all i ∈ I and for all θi ∈ Θi , we have that 

si (θi ) ∈ arg max p(θ
si
�∈Si 

∑ 
−i 

−i | θi )ui (si
�, s−i (θ−i ), θi , θ−i ), 

θ

or in the non-finite case, 

si (θi ) ∈ arg max ui (si
�, s−i (θ−i ), θi , θ−i )P(dθ−i | θi ) . 

si
�∈Si 

Hence a Bayesian Nash equilibrium is a Nash equilibrium of the 
“expanded game” in which each player i ’s space of pure strategies is 
the set of maps from Θi to Si . 
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Game Theory: Lecture 18 Auctions 

Auctions 

A major application of Bayesian games is to auctions. 

This corresponds to a situation of incomplete information because the 
valuations of different potential buyers are unknown. 
We made the distinction between: 

Private value auctions: valuation of each agent is independent of 
others’ valuations; 
Common value auctions: the object has a potentially common value, 
and each individual’s signal is imperfectly correlated with this common 
value. 

We have analyzed private value first-price and second-price sealed bid 
auctions. 

Each of these two auction formats defines a static game of incomplete 
information (Bayesian game) among the bidders. 
We determined Bayesian Nash equilibria in these games and compared 
the equilibrium bidding behavior. 
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Game Theory: Lecture 18 Auctions 

Model 

There is a single object for sale and N potential buyers bidding for it. 

Bidder i assigns a value vi to the object, i.e., a utilityvi − bi , when he pays 
bi for the object. He knows vi . This implies that we have a private value 
auction (vi is his “private information” and “private value”). 

Suppose also that each vi is independently and identically distributed on the 
interval [0, v̄ ] with cdf F , with continuous density f and full support on 
[0, v̄ ]. 

Bidder i knows the realization of its value vi and that other bidders’ values 
are independently distributed according to F , i.e., all components of the 
model except the realized values are “common knowledge”. 

Bidders are risk neutral, i.e., they are interested in maximizing their 
expected profits. 

This model defines a Bayesian game of incomplete information, where the 
types of the players (bidders) are their valuations, and a pure strategy for a 
bidder is a map 

βi : [0, v̄ ] R+.→ 
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Game Theory: Lecture 18 Auctions 

Results


With a reasoning similar to its counterpart with complete information, we 
establish in a second-price auction, it is a weakly dominant strategy to bid 
truthfully, i.e., according to βII (v ) = v . 

Proposition 

In the second price auction, there exists a unique Bayesian Nash equilibrium 
which involves 

βII (v ) = v . 

For first-price auctions, we looked for a symmetric (increasing and 
differentiable) equilibrium. 

Proposition 

In the first price auction, there exists a symmetric equilibrium given by 

βI (v ) = E[y1 | y1 < v ]. 
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Game Theory: Lecture 18 Auctions 

Results


We also showed that both auction formats yield the same expected revenue 
to the seller. 

Moreover, we established the revenue-equivalence theorem: 

Theorem 

Any symmetric and increasing equilibria of any standard auction (such that the 
expected payment of a bidder with value 0 is 0) yields the same expected revenue 
to the seller. 
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Game Theory: Lecture 18 Common Value Auctions 

Common Value Auctions: A Simple Example 

Common value auctions are more complicated, because each player has to 
infer the valuation of the other player (which is relevant for his own 
valuation) from the bid of the other player (or more generally from the fact 
that he has one). 

The analysis of common value auctions is typically more complicated. So we 
will just communicate the main ideas using an example. 

Consider the following example. There are two players, each receiving a 
signal si . The value of the good to both of them is 

vi = αsi + γs−i , 

where α ≥ γ ≥ 0. Private values are the special case where α = 1 and 
γ = 0. 

Suppose that both s1 and s2 are distributed uniformly over [0, 1]. 
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Game Theory: Lecture 18 Common Value Auctions 

Second Price Auctions with Common Values 

Now consider a second price auction. 

Instead of truthful bidding, now the symmetric equilibrium is each 
player bidding 

βi (si ) = (α + γ) si . 

Why? 

Given that the other player is using the same strategy, the probability 
that player i will win when he bids b is 

Pr β−i (s−i ) < b = Pr ((α + γ) s−i < b) 
b 

= . 
α + γ 

The price he will pay is simply β−i (s−i ) = (α + γ) s−i (since this is a 
second price auction). 
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Game Theory: Lecture 18 Common Value Auctions 

Second Price Auctions with Common Values (continued)


Conditional on the fact that b−i ≤ b (i.e., winning), we can compute 
the expected payment as 

b b 
E (α + γ) s−i | s−i < = . 

α + γ 2 

Next, let us compute the expected value of player −i ’s signal 
conditional on player i winning. With the same reasoning, this is 

b b 
E s s < = −i | −i 

α + γ 2 (α + γ) 
. 
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Game Theory: Lecture 18 Common Value Auctions 

Second Price Auctions with Common Values (continued) 

Therefore, the expected utility of bidding bi for player i with signal si 
is: 

bi
Ui (bi , si ) = Pr [bi wins] × αsi + γE [s−i | bi wins] − 

2 

bi γ bi bi= αsi + . 
α + γ 2 α + γ 

− 
2 

Maximizing this with respect to bi (for given si ) implies 

βi (si ) = (α + γ) si , 

establishing that this is a symmetric Bayesian Nash equilibrium of this 
common value auction. 
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Game Theory: Lecture 18 Common Value Auctions 

First Price Auctions with Common Values 

We can also analyze the same game under an auction format 
corresponding to first price sealed bid auctions. 

In this case, with an analysis similar to that of the first price auctions 
with private values, we can establish that the unique symmetric 
Bayesian Nash equilibrium is for each player to bid 

βI (si ) = 
1 

(α + β) si .i 2 

It can be verified that expected revenues are again the same. This 
illustrates the general result that revenue equivalence principle 
continues to hold for common value auctions. 
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Game Theory: Lecture 18 Perfect Bayesian Equilibria 

Incomplete Information in Extensive Form Games 

Many situations of incomplete information cannot be represented as 
static or strategic form games. 

Instead, we need to consider extensive form games with an explicit 
order of moves—or dynamic games. 

In this case, as mentioned earlier in the lectures, we use information 
sets to represent what each player knows at each stage of the game. 

Since these are dynamic games, we will also need to strengthen our 
Bayesian Nash equilibria to include the notion of perfection—as in 
subgame perfection. 

The relevant notion of equilibrium will be Perfect Bayesian Equilibria, 
or Perfect Bayesian Nash Equilibria. 
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Game Theory: Lecture 18 Perfect Bayesian Equilibria 

Example


Figure: Selten’s Horse 
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Game Theory: Lecture 18 Perfect Bayesian Equilibria 

Dynamic Games of Incomplete Information 

Definition 

A dynamic game of incomplete information consists of 

A set of players I ; 

A sequence of histories Ht at the tth stage of the game, each history 
assigned to one of the players (or to Nature/Chance); 

An information partition, which determines which of the histories 
assigned to a player are in the same information set. 

A set of (pure) strategies for each player i , Si , which includes an 
action at each information set assigned to the player. 

A set of types for each player i : θi ∈ Θi ; 

A payoff function for each player i : ui (s1, . . . , sI , θ1, . . . , θI ); 
A (joint) probability distribution p(θ1, . . . , θI ) over types (or 
P(θ1, . . . , θI ) when types are not finite). 
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Game Theory: Lecture 18 Perfect Bayesian Equilibria 

Strategies, Beliefs and Bayes Rule 

The most economical way of approaching these games is to first 
define a belief system, which determines a posterior for each agent 
over the set of nodes in an information set. Belief systems are often 
denoted by µ. 
In Selten’s horse player 3 needs to have beliefs about whether when 
his information set is reached, he is at the left or the right node. 
A behavioral strategy of player i in an extensive form game is a 
function that assigns to each of i ’s information sets a probability 
distribution over the possible actions at that information set (each of 
these distributions are independent). 
We say that a strategy is sequentially rational if, given beliefs and 
other players strategies, no player can improve his or her payoffs at 
any stage of the game. 
We say that a belief system is consistent if it is derived from 
equilibrium strategies using Bayes rule. 
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Game Theory: Lecture 18 Perfect Bayesian Equilibria 

Strategies, Beliefs and Bayes Rule (continued) 

In Selten’s horse, if the strategy of player 1 is D, then Bayes rule 
implies that µ3 (left) = 1, since conditional on her information set 
being reached, player 3’s assessment must be that this was because 
player 1 played D. 

Similarly, if the strategy of player 1 is D with probability p and the 
strategy of player 2 is d with probability q, then Bayes rule implies 
that 

µ3 (left) = 
p + (1 

p 
− p) q 

. 

What happens if p = q = 0? In this case, µ3 (left) is given by 0/0, 
and is thus undefined. Under the consistency requirement here, it can 
take any value. This implies, in particular, that information sets that 
are not reached along the equilibrium path will have unrestricted 
beliefs. 
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Game Theory: Lecture 18 Perfect Bayesian Equilibria 

Perfect Bayesian Equilibria 

Definition 

A Perfect Bayesian Equilibrium in a dynamic game of incomplete information is a 
strategy profile s and belief system µ such that: 

The strategy profile s is sequentially rational given µ (each player’s strategy 
is optimal in the part of the game that follows each of her information sets, 
given the strategy profile and her belief about the history in the information 
set that has occurred). 

The belief system µ is consistent given s (for every information set reached 
with positive probability given the strategy profile s, the probability assigned 
to each history in the information set by the belief system µ is given by 
Bayes’ rule). 

Perfect Bayesian Equilibrium is a relatively weak equilibrium concept for 
dynamic games of incomplete information. It is often strengthened by 
restricting beliefs of information sets that are not reached along the 
equilibrium path. 

20 



Game Theory: Lecture 18 Perfect Bayesian Equilibria 

Perfect Bayesian Equilibria 

Theorem 

Consider a finite dynamic game of incomplete information. Then a (possibly 
mixed) Perfect Bayesian Equilibrium exists. 

Once again, the idea of the proof is the same as those we have seen before. 

Backward induction starting from the information sets at the end ensures 
perfection, and one can construct a belief system supporting these 
strategies, so the result is a Perfect Bayesian Equilibrium. 

Theorem 

The strategy profile in any Perfect Bayesian Equilibrium is a Nash Equilibrium. 

Sequential rationality implies each player’s strategy optimal at the beginning 
of the game given others’ strategies and beliefs. Consistency ensures 
correctness of the beliefs. 
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Game Theory: Lecture 18 Perfect Bayesian Equilibria 

Perfect Bayesian Equilibria in Selten’s Horse 
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It can be verified that there are two pure strategy Nash equilibria. 
(C , c , R) and (D, c , L) . 
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Game Theory: Lecture 18 Perfect Bayesian Equilibria 

Perfect Bayesian Equilibria in Selten’s Horse (continued) 

However, if we look at sequential rationality, the second of these 
equilibria will be ruled out. 

Suppose we have (D, c , L). 
The belief of player 3 will be µ3 (left) = 1. 

Player 2, if he gets a chance to play, will then never play c , since d 
has a payoff of 4, while c would give him 1. If he were to play d , then 
player of 1 would prefer C , but (C , d , L) is not an equilibrium, 
because then we would have µ3 (left) = 0 and player 3 would prefer 
R. 

Therefore, there is a unique pure strategy Perfect Bayesian 
Equilibrium outcome (C , c , R). The belief system that supports this 
could be any µ (left) ∈ [0, 1/3].3 
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