
Chapter 2 

POISSON PROCESSES 

2.1 Introduction 

A Poisson process is a simple and widely used stochastic process for modeling the times 
at which arrivals enter a system. It is in many ways the continuous-time version of the 
Bernoulli process that was described in Section 1.3.5. For the Bernoulli process, the arrivals 
can occur only at positive integer multiples of some given increment size (often taken to be 
1). Section 1.3.5 characterized the process by a sequence of IID binary random variables 
(rv’s), Y1, Y2, . . . , where Yi = 1 indicates an arrival at increment i and Yi = 0 otherwise. 
We observed (without any careful proof) that the process could also be characterized by 
the sequence of interarrival times. These interarrival times are geometrically distributed 
IID rv’s . 

For the Poisson process, arrivals may occur at arbitrary positive times, and the probability 
of an arrival at any particular instant is 0. This means that there is no very clean way of 
describing a Poisson process in terms of the probability of an arrival at any given instant. It 
is more convenient to define a Poisson process in terms of the sequence of interarrival times, 
X1,X2, . . . , which are defined to be IID. Before doing this, we describe arrival processes in 
a little more detail. 

2.1.1 Arrival processes 

An arrival process is a sequence of increasing rv’s, 0 < S1 < S2 < , where1 Si < Si+1 · · · 
means that Si+1 � Si is a positive rv, i.e., a rv X such that FX (0) = 0. The rv’s S1, S2, . . . , 
are called arrival epochs (the word time is somewhat overused in this subject) and represent 
the times at which some repeating phenomenon occurs. Note that the process starts at time 

1These rv’s Si can be viewed as sums of interarrival times. They should not be confused with the rv’s 
Si used in Section 1.3.5 to denote the number of arrivals by time i for the Bernoulli process. We use Si 

throughout to denote the sum of i rv’s. Understanding how such sums behave is a central issue of every 
chapter (and almost every section ) of these notes. Unfortunately, for the Bernoulli case, the IID sums 
of primary interest are the sums of binary rv’s at each time increment, whereas here the sums of primary 
interest are the sums of interarrival intervals. 
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0 and that multiple arrivals can’t occur simultaneously (the phenomenon of bulk arrivals can 
be handled by the simple extension of associating a positive integer rv to each arrival). We 
will sometimes permit simultaneous arrivals or arrivals at time 0 as events of zero probability, 
but these can be ignored. In order to fully specify the process by the sequence S1, S2, . . . of 
rv’s, it is necessary to specify the joint distribution of the subsequences S1, . . . , Sn for all 
n > 1. 

Although we refer to these processes as arrival processes, they could equally well model 
departures from a system, or any other sequence of incidents. Although it is quite common, 
especially in the simulation field, to refer to incidents or arrivals as events, we shall avoid 
that here. The nth arrival epoch Sn is a rv and {Sn  t}, for example, is an event. This 
would make it confusing to refer to the nth arrival itself as an event. 
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Figure 2.1: A sample function of an arrival process and its arrival epochs {S1, S2, . . . }, 
its interarrival intervals {X1,X2, . . . }, and its counting process {N(t); t > 0} 

As illustrated in Figure 2.1, any arrival process can also be specified by two alternative 
stochastic processes. The first alternative is the sequence of interarrival times, X1,X2, . . . ,. 
These are positive rv’s defined in terms of the arrival epochs by X1 = S1 and Xi = Si �Si�1 

for i > 1. Similarly, given the Xi, the arrival epochs Si are specified as 

Sn = 
Xn 

Xi. (2.1)
i=1 

Thus the joint distribution of X1, . . . ,Xn for all n > 1 is su�cient (in principle) to specify 
the arrival process. Since the interarrival times are IID in most cases of interest, it is usually 
much easier to specify the joint distribution of the Xi than of the Si. 

The second alternative for specifying an arrival process is the counting process N(t), where 
for each t > 0, the rv N(t) is the number of arrivals2 up to and including time t. 

The counting process {N(t); t > 0}, illustrated in Figure 2.1, is an uncountably infinite 
family of rv’s {N(t); t > 0} where N(t), for each t > 0, is the number of arrivals in 
the interval (0, t]. Whether the end points are included in these intervals is sometimes 
important, and we use parentheses to represent intervals without end points and square 
brackets to represent inclusion of the end point. Thus (a, b) denotes the interval {t : a < 
t < b}, and (a, b] denotes {t : a < t  b}. The counting rv’s N(t) for each t > 0 
are then defined as the number of arrivals in the interval (0, t]. N(0) is defined to be 0 

2Thus, for the Bernoulli process with an increment size of 1, N(n) is the rv denoted as Sn in Section 
1.3.5 
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with probability 1, which means, as before, that we are considering only arrivals at strictly 
positive times. 

The counting process {N(t); t > 0} for any arrival process has the properties that N(⌧) �
N(t) for all ⌧ � t > 0 (i.e., N(⌧ ) � N(t) is a nonnegative random variable). 

For any given integer n � 1 and time t > 0, the nth arrival epoch, Sn, and the counting 
random variable, N(t), are related by 

{Sn  t} = {N(t) � n}. (2.2) 

To see this, note that {Sn  t} is the event that the nth arrival occurs by time t. This 
event implies that N(t), the number of arrivals by time t, must be at least n; i.e., it implies 
the event {N(t) � n}. Similarly, {N(t) � n} implies {Sn  t}, yielding the equality in 
(2.2). This equation is essentially obvious from Figure 2.1, but is one of those peculiar 
obvious things that is often di�cult to see. An alternate form, which is occasionally more 
transparent, comes from taking the complement of both sides of (2.2), getting 

{Sn > t} = {N(t) < n}. (2.3) 

For example, the event {S1 > t} means that the first arrival occurs after t, which means 
{N(t) < 1} (i.e., {N(t) = 0}). These relations will be used constantly in going back and 
forth between arrival epochs and counting rv’s. In principle, (2.2) or (2.3) can be used to 
specify joint distribution functions of arrival epochs in terms of joint distribution functions 
of counting variables and vice versa, so either characterization can be used to specify an 
arrival process. 

In summary, then, an arrival process can be specified by the joint distributions of the arrival 
epochs, the interarrival intervals, or the counting rv’s. In principle, specifying any one of 
these specifies the others also.3 

2.2 Definition and properties of a Poisson process 

A Poisson process is an example of an arrival process, and the interarrival times provide 
the most convenient description since the interarrival times are defined to be IID. Processes 
with IID interarrival times are particularly important and form the topic of Chapter 3. 

Definition 2.2.1. A renewal process is an arrival process for which the sequence of inter-
arrival times is a sequence of IID rv’s. 

Definition 2.2.2. A Poisson process is a renewal process in which the interarrival intervals 

3By definition, a stochastic process is a collection of rv’s, so one might ask whether an arrival process 
(as a stochastic process) is ‘really’ the arrival epoch process 0  S1  S2  · · · or the interarrival process 
X1, X2, . . . or the counting process {N(t); t > 0}. The arrival time process comes to grips with the actual 
arrivals, the interarrival process is often the simplest, and the counting process ‘looks’ most like a stochastic 
process in time since N(t) is a rv for each t � 0. It seems preferable, since the descriptions are so clearly 
equivalent, to view arrival processes in terms of whichever description is most convenient. 
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have an exponential distribution function; i.e., for some real � > 0, each Xi has the density4 

fX (x) = � exp(��x) for x � 0. 

The parameter � is called the rate of the process. We shall see later that for any interval 
of size t, �t is the expected number of arrivals in that interval. Thus � is called the arrival 
rate of the process. 

2.2.1 Memoryless property 

What makes the Poisson process unique among renewal processes is the memoryless property 
of the exponential distribution. 

Definition 2.2.3. Memoryless random variables: A rv X possesses the memoryless 
property if Pr{X > 0} = 1, (i.e., X is a positive rv) and, for every x � 0 and t � 0, 

Pr{X > t + x} = Pr{X > x} Pr{X > t} . (2.4) 

Note that (2.4) is a statement about the complementary distribution function of X. There 
is no intimation that the event {X > t + x} in the equation has any particular relation to 
the events {X > t} or {X > x}. 

For an exponential rv X of rate � > 0, Pr{X > x} = e��x for x � 0. This satisfies (2.4) for 
all x � 0, t � 0, so X is memoryless. Conversely, an arbitrary rv X is memoryless only if 
it is exponential. To see this, let h(x) = ln[Pr{X > x}] and observe that since Pr{X > x}
is nonincreasing in x, h(x) is also. In addition, (2.4) says that h(t + x) = h(x) + h(t) for all 
x, t � 0. These two statements (see Exercise 2.6) imply that h(x) must be linear in x, and 
Pr{X > x} must be exponential in x. 

Since a memoryless rv X must be exponential, Pr{X > t} > 0 for all t � 0. This means 
that we can rewrite (2.4) as 

Pr{X > t + x | X > t} = Pr{X > x} . (2.5) 

If X is interpreted as the waiting time until some given arrival, then (2.5) states that, given 
that the arrival has not occurred by time t, the distribution of the remaining waiting time 
(given by x on the left side of (2.5)) is the same as the original waiting time distribution 
(given on the right side of (2.5)), i.e., the remaining waiting time has no ‘memory’ of 
previous waiting. 

Example 2.2.1. Suppose X is the waiting time, starting at time 0, for a bus to arrive, 
and suppose X is memoryless. After waiting from 0 to t, the distribution of the remaining 
waiting time from t is the same as the original distribution starting from 0. The still waiting 
customer is, in a sense, no better o↵ at time t than at time 0. On the other hand, if the bus 
is known to arrive regularly every 16 minutes, then it will certainly arrive within a minute, 

4With this density, Pr{Xi>0} = 1, so that we can regard Xi as a positive random variable. Since events 
of probability zero can be ignored, the density � exp(��x) for x � 0 and zero for x < 0 is e↵ectively the 
same as the density � exp(��x) for x > 0 and zero for x  0. 
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and X is not memoryless. The opposite situation is also possible. If the bus frequently 
breaks down, then a 15 minute wait can indicate that the remaining wait is probably very 
long, so again X is not memoryless. We study these non-memoryless situations when we 
study renewal processes in the next chapter. 

Although memoryless distributions must be exponential, it can be seen that if the defini
tion of memoryless is restricted to integer times, then the geometric distribution becomes 
memoryless, and it can be seen as before that this is the only memoryless integer-time 
distribution. In this respect, the Bernoulli process (which has geometric interarrival times) 
is like a discrete-time version of the Poisson process (which has exponential interarrival 
times). 

We now use the memoryless property of exponential rv’s to find the distribution of the 
first arrival in a Poisson process after an arbitrary given time t > 0. We not only find this 
distribution, but also show that this first arrival after t is independent of all arrivals up to 
and including t. More precisely, we prove the following theorem. 

Theorem 2.2.1. For a Poisson process of rate �, and any given t > 0, the length of the 
interval from t until the first arrival after t is a nonnegative rv Z with the distribution 
function 1 � exp[��z] for z � 0. This rv is independent of all arrival epochs before time t 
and independent of the set of rv’s {N(⌧); ⌧  t}. 

The basic idea behind this theorem is to note that Z, conditional on the time ⌧ of the last 
arrival before t, is simply the remaining time until the next arrival. Since the interarrival 
time starting at ⌧ is exponential and thus memoryless, Z is independent of ⌧  t, and of 
all earlier arrivals. The following proof carries this idea out in detail. 

X1 -� 
Z -� 

X2 -� 

t0 S1 S2 

Figure 2.2: For arbitrary fixed t > 0, consider the event N(t) = 0. Conditional on this 
event, Z is the distance from t to S1; i.e., Z = X1 � t. 

Proof: Let Z be the distance from t until the first arrival after t. We first condition on 
N(t) = 0 (see Figure 2.2). Given N(t) = 0, we see that X1 > t and Z = X1 � t. Thus, 

Pr{Z > z | N(t)=0}	 = Pr{X1 > z + t | N(t)=0} 

= Pr{X1 > z + t X1 > t} (2.6) 
= Pr{X1 > z} = 

| 
e��z . (2.7) 

In (2.6), we used the fact that {N(t) = 0} = {X1 > t}, which is clear from Figure 2.1 (and 
also from (2.3)). In (2.7) we used the memoryless condition in (2.5) and the fact that X1 is 
exponential. 
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Next consider the conditions that N(t) = n (for arbitrary n > 1) and Sn = ⌧ (for arbitrary 
⌧  t). The argument here is basically the same as that with N(t) = 0, with a few extra 
details (see Figure 2.3). 
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Figure 2.3: Given N(t) = 2, and S2 = ⌧ , X3 is equal to Z + (t � ⌧). Also, the event 
{N(t)=2, S2 =⌧} is the same as the event {S2 =⌧, X3>t�⌧}. 

Conditional on N(t) = n and Sn = ⌧ , the first arrival after t is the first arrival after the 
arrival at Sn, i.e., Z = z corresponds to Xn+1 = z + (t � ⌧). 

Pr{Z > z | N(t)=n, Sn =⌧}	 = Pr{Xn+1 > z+t�⌧ | N(t)=n, Sn =⌧} (2.8) 
= Pr{Xn+1 > z+t�⌧ | Xn+1>t�⌧, Sn =⌧} (2.9) 
= Pr{Xn+1 > z+t�⌧ | Xn+1>t�⌧} (2.10) 
= Pr{Xn+1 > z} = e��z , (2.11) 

where (2.9) follows because, given Sn = ⌧  t, we have {N(t) = n} = {Xn+1 > t � ⌧} (see 
Figure 2.3). Eq. (2.10) follows because Xn+1 is independent of Sn. Eq. (2.11) follows from 
the memoryless condition in (2.5) and the fact that Xn+1 is exponential. 

The same argument applies if, in (2.8), we condition not only on Sn but also on S1, . . . , Sn�1. 
Since this is equivalent to conditioning on N(⌧) for all ⌧ in (0, t], we have 

Pr{Z > z | {N(⌧ ), 0 < ⌧  t}} = exp(��z).	 (2.12) 

Next consider subsequent interarrival intervals after a given time t. For m � 2, let Zm be 
the interarrival interval from the m � 1st arrival epoch after t to the mth arrival epoch 
after t. Let Z in (2.12) be denoted as Z1 here. Given N(t) = n and Sn = ⌧ , we see that 
Zm = Xm+n for m � 2, and therefore Z1, Z2, . . . , are IID exponentially distributed rv’s, 
conditional on N(t) = n and Sn = ⌧ (see Exercise 2.8). Since this is independent of N(t) 
and Sn, we see that Z1, Z2, . . . are unconditionally IID and also independent of N(t) and 
Sn. It should also be clear that Z1, Z2, . . . are independent of {N(⌧); 0 < ⌧  t}. 

The above argument shows that the portion of a Poisson process starting at an arbitrary 
time t > 0 is a probabilistic replica of the process starting at 0; that is, the time until the first 
arrival after t is an exponentially distributed rv with parameter �, and all subsequent arrivals 
are independent of this first arrival and of each other and all have the same exponential 
distribution. 
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Definition 2.2.4. A counting process {N(t); t > 0} has the stationary increment property 
if for every t0 > t > 0, N(t0) � N(t) has the same distribution function as N(t0 � t). 

Let us define
N(t, t0) = N(t0) � N(t) as the number of arrivals in the interval (t, t
We have just shown that for a Poisson process, the rv N(t, t0) has the same 

distribution as N(t0 � t), which means that a Poisson process has the stationary increment 
property. Thus, the distribution of the number of arrivals in an interval depends on the size 

e

of the interval but not on its starting point. 

Definition 2.2.5. A counting process {N(t); t > 0} has the independent increment prop
erty if, for every integer k > 0, and every k-tuple of times 0 < t1 < t2 < · · · < tk, the
k-tuple of rv’s N(t1), Ne(t1, t2), . . . , Ne(tk�1, tk) of rv’s are statistically independent. 

For the Poisson process, Theorem 2.2.1 says that for any t, the time Z1 until the next 
arrival after t is independent of N(⌧) for all ⌧  t. Letting t1 < t2 < · · · tk 1 <�
t,
 this means that Z1 is independent of N(t1), Ne(t1, t2), . . . , N(tk 1, t). We have also �
seen that the subsequent interarrival times after Z1, and thus N(t, t0) are independent 
of N(t1), Ne(t1, t2), . . . , Ne(tk 1, t). Renaming t as tk and t0 as tk+1

e
, we see that N(t , t )� k k+1

is independent of N(t1), Ne(t1, t2), . . . , Ne(tk 1 , tk ). Since this is true

e
for all k, the Poisson �

process has the independent increment property. In summary, we have proved the

e
following: 

Theorem 2.2.2. Poisson processes have both the stationary increment and independent 
increment properties. 

Note that if we look only at integer times, then the Bernoulli process also has the stationary 
and independent increment properties. 

e 0] for any 
given t
0 � t. 

2.2.2 Probability density of Sn and S1, . . . Sn 

Recall from (2.1) that, for a Poisson process, Sn is the sum of n IID rv’s, each with the 
density function fX (x) = � exp(��x), x � 0. Also recall that the density of the sum of two 
independent rv’s can be found by convolving their densities, and thus the density of S2 can 
be found by convolving fX (x) with itself, S3 by convolving the density of S2 with fX (x), 
and so forth. The result, for t � 0, is called the Erlang density, 5 

fSn (t) = 
�ntn�1 exp(��t) 

. (2.13)
(n � 1)! 

We can understand this density (and other related matters) much better by reviewing the 
above mechanical derivation more carefully. The joint density for two continuous indepen
dent rv’s X1 and X2 is given by fX1X2 (x1, x2) = fX1 (x1)fX2 (x2). Letting S2 = X1 + X2 and 
substituting S2 � X1 for X2, we get the following joint density for X1 and the sum S2, 

fX1S2 (x1, s2) = fX1 (x1)fX2 (s2 � x1). 
5Another (somewhat rarely used) name for the Erlang density is the gamma density. 
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The marginal density for S2 then results from integrating x1 out from the joint density, and 
this, of course, is the familiar convolution integration. For IID exponential rv’s X1,X2, the 
joint density of X1, S2 takes the following interesting form: 

fX1S2 (x1s2) = �2 exp(��x1) exp(��(s2�x1)) = �2 exp(��s2) for 0  x1  s2. (2.14) 

This says that the joint density does not contain x1, except for the constraint 0  x1  s2. 
Thus, for fixed s2, the joint density, and thus the conditional density of X1 given S2 = s2 

is uniform over 0  x1  s2. The integration over x1 in the convolution equation is then 
simply multiplication by the interval size s2, yielding the marginal distribution fS2 (s2) = 
�2s2 exp(��s2), in agreement with (2.13) for n = 2. 

This same curious behavior exhibits itself for the sum of an arbitrary number n of IID 
exponential rv’s. That is, fX1···Xn (x1, . . . , xn) = �n exp(��x1 � �x2 � · · · � �xn). Letting 
Sn = X1 + + Xn and substituting Sn � X1 � · · · � Xn�1 for Xn, this becomes · · · 

fX1···Xn�1Sn (x1, . . . , xn�1, sn) = �n exp(��sn). 

since each xi cancels out above. This equation is valid over the region where each xi � 0 
and sn � x1 � · · · � xn�1 � 0. The density is 0 elsewhere. 

The constraint region becomes more clear here if we replace the interarrival intervals 
X1, . . . ,Xn�1 with the arrival epochs S1, . . . , Sn�1 where S1 = X1 and Si = Xi + Si�1 

for 2  i  n � 1. The joint density then becomes6 

fS1 Sn (s1, . . . , sn) = �n exp(��sn) for 0  s1  s2 · · ·  sn. (2.15)···

The interpretation here is the same as with S2. The joint density does not contain any 
arrival time other than sn, except for the ordering constraint 0  s1  s2  · · ·  sn, and 
thus this joint density is constant over all choices of arrival times satisfying the ordering 
constraint. Mechanically integrating this over s1, then s2, etc. we get the Erlang formula 
(2.13). The Erlang density then is the joint density in (2.15) times the volume sn�1/(n�1)!n 
of the region of s1, . . . , sn�1 satisfing 0 < s1 < < sn. This will be discussed further · · · 
later. 

Note that (2.15), for all n specifies the joint distribution for all arrival times, and thus 
fully specifes a Poisson process. An alternate definition for the Poisson process is then any 
process whose joint arrival time distribution satisifes (2.15). This is not customarily used 
to define the Poisson process, whereas two alternate definitions given subsequently often 
are used as a starting definition. 

2.2.3 The PMF for N(t) 

The Poisson counting process, {N(t); t > 0} consists of a nonnegative integer rv N(t) for 
each t > 0. In this section, we show that the PMF for this rv is the well-known Poisson 

6The random vector S = (S1, . . . , Sn) is then related to the interarrival intervals X = (X1, . . . , Xn) 
by a linear transformation, say S = AX where A is an upper triangular matrix with ones on the main 
diagonal and on all elements above the main diagonal. In general, the joint density of a non-singular linear 
transformation AX at X = x is fX (x )/| det A|. This is because the transformation A carries an incremental 
cube, � on each side, into a parallelepiped of volume �n| det A|. Since, for the case here, A is upper triangular 
with 1’s on the diagonal, det A = 1. 
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PMF, as stated in the following theorem. We give two proofs for the theorem, each providing 
its own type of understanding and each showing the close relationship between {N(t) = n}
and {Sn = t}. 

Theorem 2.2.3. For a Poisson process of rate �, and for any t > 0, the PMF for N(t) 
(i.e., the number of arrivals in (0, t]) is given by the Poisson PMF, 

pN(t)(n) = 
(�t)n exp(��t) 

. (2.16) 
n! 

Proof 1: This proof, for given n and t, is based on two ways of calculating Pr{t < Sn+1  t + �}
for some vanishingly small �. The first way is based on the already known density of Sn+1 

and gives 

Pr{t < Sn+1  t + �} = 
Z t+� 

fSn (⌧) d⌧ = fSn (t) (� + o(�)). 
t 

The term o(�) is used to describe a function of � that goes to 0 faster than � as � !
0. More precisely, a function g(�) is said to be of order o(�) if lim�!0 

g(�) = 0. Thus 
Pr{t < Sn  t + �} = fSn (t)(� + o(�)) is simply a consequence of the fact that Sn has a 
continuous probability density in the interval [t, t + �]. 

The second way to calculate Pr{t < Sn+1  t + �} is to first observe that the probability of 
more than 1 arrival in (t, t + �]) is o(�). Ignoring this possibility, {t < Sn+1  t + �} occurs 
if exactly n arrivals are in the interval (0, t] and one arrival occurs in (t, t + �]. Because 
of the independent increment property, this is an event of probability pN(t)(n)(�� + o(�)). 
Thus 

pN(t)(n)(�� + o(�)) + o(�) = fSn+1 (t)(� + o(�)). 

Dividing by � and taking the limit � ! 0, we get 

�pN(t)(n) = fSn+1 (t). 

Using the density for fSn in (2.13), we get (2.16). 

Proof 2: The approach here is to use the fundamental relation that {N(t) � n} = {Sn  t}. 
Taking the probabilities of these events, 

1X
pN(t)(i) = 

Z t 
fSn (⌧) d⌧ for all n � 1 and t > 0. 

0i=n 

The term on the right above is the distribution function of Sn and the term on the left is 
the complementary distribution function of N(t). The complementary distribution function 
and the PMF of N(t) uniquely specify each other, so the theorem is equivalent to showing 
that 

X1 

i=n 

(�t)i exp(��t) 
i! 

= 
Z t 

0 
fSn (⌧) d⌧. (2.17) 
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If we take the derivative with respect to t of each side of (2.17), we find that almost magically 
each term except the first on the left cancels out, leaving us with 

�ntn�1 exp(��t) 
(n � 1)! 

= fSn (t). 

Thus the derivative with respect to t of each side of (2.17) is equal to the derivative of the 
other for all n � 1 and t > 0. The two sides of (2.17) are also equal in the limit t ! 0, so 
it follows that (2.17) is satisfied everywhere, completing the proof. 

2.2.4 Alternate definitions of Poisson processes 

Definition 2 of a Poisson process: A Poisson counting process {N(t); t > 0} is a 
counting process that satisfies (2.16) (i.e., has the Poisson PMF) and has the independent 
and stationary increment properties. 

We have seen that the properties in Definition 2 are satisfied starting with Definition 1 
(using IID exponential interarrival times), so Definition 1 implies Definition 2. Exercise 
2.4 shows that IID exponential interarrival times are implied by Definition 2, so the two 
definitions are equivalent. 

It may be somewhat surprising at first to realize that a counting process that has the 
Poisson PMF at each t is not necessarily a Poisson process, and that the independent and 
stationary increment properties are also necessary. One way to see this is to recall that 
the Poisson PMF for all t in a counting process is equivalent to the Erlang density for 
the successive arrival epochs. Specifying the probability density for S1, S2, . . . , as Erlang 
specifies the marginal densities of S1, S2, . . . , but need not specify the joint densities of 
these rv’s. Figure 2.4 illustrates this in terms of the joint density of S1, S2, given as 

fS1S2 (s1s2) = �2 exp(��s2) for 0  s1  s2 

and 0 elsewhere. The figure illustrates how the joint density can be changed without 
changing the marginals. 

There is a similar e↵ect with the Bernoulli process in that a discrete counting process for 
which the number of arrivals from 0 to t, for each integer t, is a binomial rv, but the process 
is not Bernoulli. This is explored in Exercise 2.5. 

The next definition of a Poisson process is based on its incremental properties. Consider 
the number of arrivals in some very small interval (t, t + �]. Since N(t, t + �) has the same 
distribution as N(�), we can use (2.16) to get 

e

Pr
n
N(t, t + �) = 0

o 
= e��� 1 � �� + o(�)e ⇡ 

Pr
n
Ne(t, t + �) = 1

o 
= ��e��� ⇡ �� + o(�) 

Pr
n
N(t, t + �) � 2

o 
⇡ o(�). (2.18)e

Definition 3 of a Poisson process: A Poisson counting process is a counting process 
that satisfies (2.18) and has the stationary and independent increment properties. 
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fS1S2 (s1s2) > 0 
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s1 

Figure 2.4: The joint density of S1, S2 is nonzero in the region shown. It can be 
changed, while holding the marginals constant, by reducing the joint density by ✏ in the 
upper left and lower right squares above and increasing it by ✏ in the upper right and 
lower left squares. 

We have seen that Definition 1 implies Definition 3. The essence of the argument the other 
way is that for any interarrival interval X, FX (x + �) � FX (x) is the probability of an arrival 
in an appropriate infinitesimal interval of width �, which by (2.18) is �� +o(�). Turning this 
into a di↵erential equation (see Exercise 2.7), we get the desired exponential interarrival 
intervals. Definition 3 has an intuitive appeal, since it is based on the idea of independent 
arrivals during arbitrary disjoint intervals. It has the disadvantage that one must do a 
considerable amount of work to be sure that these conditions are mutually consistent, and 
probably the easiest way is to start with Definition 1 and derive these properties. Showing 
that there is a unique process that satisfies the conditions of Definition 3 is even harder, 
but is not necessary at this point, since all we need is the use of these properties. Section 
2.2.5 will illustrate better how to use this definition (or more precisely, how to use (2.18)). 

What (2.18) accomplishes in Definition 3, beyond the assumption of independent and sta
tionary increments, is the prevention of bulk arrivals. For example, consider a counting 
process in which arrivals always occur in pairs, and the intervals between successive pairs 
are IID and exponentially distributed with parameter � (see Figure 2.5). For this process, 
Pr
n
N(t, t + �)=1

o 
= 0, and Pr

n
N(t, t+�)=2

o 
= �� + o(�), thus violating (2.18). Thise e

process has stationary and independent increments, however, since the process formed by 
viewing a pair of arrivals as a single incident is a Poisson process. 

2.2.5 The Poisson process as a limit of shrinking Bernoulli processes 

The intuition of Definition 3 can be achieved in a less abstract way by starting with the 
Bernoulli process, which has the properties of Definition 3 in a discrete-time sense. We then 
go to an appropriate limit of a sequence of these processes, and find that this sequence of 
Bernoulli processes converges in some sense to the Poisson process. 

Recall that a Bernoulli process is an IID sequence, Y1, Y2, . . . , of binary random variables 
for which pY (1) = p and pY (0) = 1 � p. We can visualize Yi = 1 as an arrival at time i and 
Yi = 0 as no arrival, but we can also ‘shrink’ the time scale of the process so that for some 
integer j > 0, Yi is an arrival or no arrival at time i2�j . We consider a sequence indexed 
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N(t) 
4 
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0 S1 S2 

Figure 2.5: A counting process modeling bulk arrivals. X1 is the time until the first 
pair of arrivals and X2 is the interval between the first and second pair of arrivals. 

by j of such shrinking Bernoulli processes, and in order to keep the arrival rate constant, 
we let p = �2�j for the jth process. Thus for each unit increase in j, the Bernoulli process 
shrinks by replacing each slot with two slots, each with half the previous arrival probability. 
The expected number of arrivals per unit time is then �, matching the Poisson process that 
we are approximating. 

If we look at this jth process relative to Definition 3 of a Poisson process, we see that 
for these regularly spaced increments of size � = 2�j , the probability of one arrival in an 
increment is �� and that of no arrival is 1 � ��, and thus (2.18) is satisfied, and in fact 
the o(�) terms are exactly zero. For arbitrary sized increments, it is clear that disjoint 
increments have independent arrivals. The increments are not quite stationary, since, for 
example, an increment of size 2�j�1 might contain a time that is a multiple of 2�j or might 
not, depending on its placement. However, for any fixed increment of size �, the number 
of multiples of 2�j (i.e., the number of possible arrival points) is either b�2j c or 1 + b�2j c. 
Thus in the limit j !1, the increments are both stationary and independent. 

For each j, the jth Bernoulli process has an associated Bernoulli counting process Nj (t) = Pbt2j c Yi. This is the number of arrivals up to time t and is a discrete rv with the binomial i=1 

PMF. That is, pNj (t)(n) = 
�bt

n 
2j c�pn(1 � p)bt2j c�n where p = �2�j . We now show that this 

PMF approaches the Poisson PMF as j increases.7 

Theorem 2.2.4. Consider the sequence of shrinking Bernoulli processes with arrival prob
ability �2�j and time-slot size 2�j . Then for every fixed time t > 0 and fixed number of 
arrivals n, the counting PMF pNj (t)(n) approaches the Poisson PMF (of the same �) with 
increasing j, i.e., 

lim pNj (t)(n) = pN(t)(n). (2.19)
j!1 

7This limiting result for the binomial distribution is very di↵erent from the asymptotic results in Chapter 
1 for the binomial. Here the parameter p of the binomial is shrinking with increasing j, whereas there, p is 
constant while the number of variables is increasing. 
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Proof: We first rewrite the binomial PMF, for bt2j c variables with p = �2�j as 
n


lim pNj (t)(n) = lim 

✓
bt

n 
2j c

◆✓ 
1 � 

�2
�

�

2

j 

�j 

◆ 
exp[bt2j c(ln(1 � �2�j )]


j!1 j!1

n 

= lim 

✓
bt2j c

◆✓ 
�2�j ◆ 

exp(��t) (2.20)
j!1 n 1 � �2�j 

= lim 
bt2j c · bt2j �1c 

n

· · · 
! 
bt2j �n+1c 

✓ 
1 � 

�2
�

�

2

j 

�j 

◆ n 

exp(��t) (2.21) 
j!1 

=
(�t)n exp(��t) 

. (2.22) 
n! 

We used ln(1 � �2�j ) = ��2�j + o(2�j ) in (2.20) and expanded the combinatorial term 

in (2.21). In (2.22), we recognized that limj!1bt2j 
⇣ 

�2�j 
= �t for 0  i  n � 1.� ic 1��2�j 

⌘ 

Since the binomial PMF (scaled as above) has the Poisson PMF as a limit for each n, the 
distribution function of Nj (t) also converges to the Poisson distribution function for each 
t. In other words, for each t > 0, the counting random variables Nj (t) of the Bernoulli 
processes converge in distribution to N(t) of the Poisson process. 

This does not say that the Bernoulli counting processes converge to the Poisson counting 
process in any meaningful sense, since the joint distributions are also of concern. The 
following corollary treats this. 

Corollary 2.2.1. For any finite integer k > 0, let 0 < t1 < t2 < < tk be any set of · · · 
time instants. Then the joint distribution function of Nj (t1), Nj (t2), . . . Nj (tk) approaches 
the joint distribution function of N(t1), N(t2), . . . N(tk) as j !1. 

Proof: It is su�cient to show that the joint PMF’s converge. We can rewrite the joint 
PMF for each Bernoulli process as 

pNj (t1),... ,Nj (tk)(n1, . . . , nk) = pNj (t1),Ñj (t1,t2),... , Ñj (tk�1,tk)(n1, n2�n1, . . . , nk�nk�1) 
k

= pNj (t1)(n1) 
Y

pÑj (t`,t`�1)
(n` � n`�1) (2.23) 

`=2 

where we have used the independent increment property for the Bernoulli process. For the 
Poisson process, we similarly have 

k

pN(t1),... ,N(tk)(n1, . . . nk) = pN(t1)(n1) 
Y

pÑ(t`,t`�1)
(n` � n`�1) (2.24) 

`=2 

Taking the limit of (2.23) as j ! 1, we recognize from Theorem 2.2.4 that each term of 
(2.23) goes to the corresponding term in (2.24). For the Ñ rv’s , this requires a trivial 
generalization in Theorem 2.2.4 to deal with the arbitrary starting time. 

We conclude from this that the sequence of Bernoulli processes above converges to the 
Poisson process in the sense of the corollary. Recall from Section 1.5.5 that there are a 
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number of ways in which a sequence of rv’s can converge. As one might imagine, there are 
many more ways in which a sequence of stochastic processes can converge, and the corollary 
simply establishes one of these. We have neither the mathematical tools nor the need to 
delve more deeply into these convergence issues. 

Both the Poisson process and the Bernoulli process are so easy to analyze that the con
vergence of shrinking Bernoulli processes to Poisson is rarely the easiest way to establish 
properties about either. On the other hand, this convergence is a powerful aid to the in
tuition in understanding each process. In other words, the relation between Bernoulli and 
Poisson is very useful in suggesting new ways of looking at problems, but is usually not the 
best way to analyze those problems. 

2.3 Combining and splitting Poisson processes 

Suppose that ; : t > 0} and {N2(t); t > 0} are independent Poisson counting processes8 of 
rates �1 and �2 respectively. We want to look at the sum process where N(t) = N1(t)+N2(t) 
for all t � 0. In other words, {N(t); t > 0} is the process consisting of all arrivals to both 
process 1 and process 2. We shall show that {N(t); t > 0} is a Poisson counting process 
of rate � = �1 + �2. We show this in three di↵erent ways, first using Definition 3 of a 
Poisson process (since that is most natural for this problem), then using Definition 2, and 
finally Definition 1. We then draw some conclusions about the way in which each approach 
is helpful. Since {N1(t); t > 0} and {N2(t); t > 0} are independent and each possess 
the stationary and independent increment properties, it follows from the definitions that 
{N(t); t > 0} also possesses the stationary and independent increment properties. Using 
the approximations in (2.18) for the individual processes, we see that 

Pr
n
N(t, t + �) = 0

o 
= Pr

n
N1(t, t + �) = 0

o
Pr
n
N2(t, t + �) = 0

oe e e
= (1 � �1�)(1 � �2�) ⇡ 1 � ��. 

where �1�2�2 has been dropped. In the same way, Pr
n
N(t, t+�) = 1

o 
is approximated by e

�� and Pr
n
N(t, t + �) � 2

o 
is approximated by 0, both with errors proportional to �2 . It 

follows that {
e
N(t); t > 0} is a Poisson process. 

In the second approach, we have N(t) = N1(t) + N2(t). Since N(t), for any given t, is the 
sum of two independent Poisson rv’s , it is also a Poisson rv with mean �t = �1t + �2t. 
If the reader is not aware that the sum of two independent Poisson rv’s is Poisson, it can 
be derived by discrete convolution of the two PMF’s (see Exercise 1.19). More elegantly, 
one can observe that we have already implicitly shown this fact. That is, if we break an 
interval I into disjoint subintervals, I1 and I2, then the number of arrivals in I (which is 
Poisson) is the sum of the number of arrivals in I1 and in I2 (which are independent Poisson). 

8Two processes {N1(t); t > 0} and {N2(t); t > 0} are said to be independent if for all positive integers 
k and all sets of times 0 < t1 < t2 < < tk, the random variables N1(t1), . . . , N1(tk) are independent · · · 
of N2(t1), . . . , N2(tk). Here it is enough to extend the independent increment property to independence 
between increments over the two processes; equivalently, one can require the interarrival intervals for one 
process to be independent of the interarrivals for the other process. 
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Finally, since N(t) is Poisson for each t, and since the stationary and independent increment 
properties are satisfied, {N(t); t > 0} is a Poisson process. 

In the third approach, X1, the first interarrival interval for the sum process, is the minimum 
of X11, the first interarrival interval for the first process, and X21, the first interarrival 
interval for the second process. Thus X1 > t if and only if both X11 and X21 exceed t, so 

Pr{X1 > t} = Pr{X11 > t} Pr{X21 > t} = exp(��1t � �2t) = exp(��t). 

Using the memoryless property, each subsequent interarrival interval can be analyzed in the 
same way. 

The first approach above was the most intuitive for this problem, but it required constant 
care about the order of magnitude of the terms being neglected. The second approach was 
the simplest analytically (after recognizing that sums of independent Poisson rv’s are Pois
son), and required no approximations. The third approach was very simple in retrospect, 
but not very natural for this problem. If we add many independent Poisson processes to
gether, it is clear, by adding them one at a time, that the sum process is again Poisson. 
What is more interesting is that when many independent counting processes (not necessar
ily Poisson) are added together, the sum process often tends to be approximately Poisson if 
the individual processes have small rates compared to the sum. To obtain some crude intu
ition about why this might be expected, note that the interarrival intervals for each process 
(assuming no bulk arrivals) will tend to be large relative to the mean interarrival interval 
for the sum process. Thus arrivals that are close together in time will typically come from 
di↵erent processes. The number of arrivals in an interval large relative to the combined 
mean interarrival interval, but small relative to the individual interarrival intervals, will be 
the sum of the number of arrivals from the di↵erent processes; each of these is 0 with large 
probability and 1 with small probability, so the sum will be approximately Poisson. 

2.3.1 Subdividing a Poisson process 

Next we look at how to break {N(t); t > 0}, a Poisson counting process of rate �, into two 
processes, {N1(t); t > 0} and {N2(t); t > 0}. Suppose that each arrival in {N(t); t > 0}
is sent to the first process with probability p and to the second process with probability 
1 � p (see Figure 2.6). Each arrival is switched independently of each other arrival and 
independently of the arrival epochs. It may be helpful to visualize this as the combination 
of two independent processes. The first is the Poisson process of rate � and the second is a 
Bernoulli process Xn; n � 1} where pXn (1) = p and pXn (2) = 1 � p. The nth arrival of the 
Poisson process is then labeled as a type 1 arrival if Xn = 1 and as a type 2 arrival with 
probability 1 � p. 

We shall show that the resulting processes are each Poisson, with rates �1 = �p and �2 = 
�(1 � p) respectively, and that furthermore the two processes are independent. Note that, 
conditional on the original process, the two new processes are not independent; in fact one 
completely determines the other. Thus this independence might be a little surprising. 

First consider a small increment (t, t + �]. The original process has an arrival in this 
incremental interval with probability �� (ignoring �2 terms as usual), and thus process 1 
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Figure 2.6: Each arrival is independently sent to process 1 with probability p and to 
process 2 otherwise. 

has an arrival with probability ��p and process 2 with probability ��(1 � p). Because 
of the independent increment property of the original process and the independence of 
the division of each arrival between the two processes, the new processes each have the 
independent increment property, and from above have the stationary increment property. 
Thus each process is Poisson. Note now that we cannot verify that the two processes are 
independent from this small increment model. We would have to show that the number of 
arrivals for process 1 and 2 are independent over (t, t + �]. Unfortunately, leaving out the 
terms of order �2, there is at most one arrival to the original process and no possibility of 
an arrival to each new process in (t, t + �]. If it is impossible for both processes to have 
an arrival in the same interval, they cannot be independent. It is possible, of course, for 
each process to have an arrival in the same interval, but this is a term of order �2 . Thus, 
without paying attention to the terms of order �2, it is impossible to demonstrate that the 
processes are independent. 

To demonstrate that process 1 and 2 are independent, we first calculate the joint PMF 
for N1(t), N2(t) for arbitrary t. Conditioning on a given number of arrivals N(t) for the 
original process, we have 

(m + k)!
Pr{N1(t)=m,N2(t)=k | N(t)=m+k} = 

m!k! 
p m(1 � p)k . (2.25) 

Equation (2.25) is simply the binomial distribution, since, given m + k arrivals to the 
original process, each independently goes to process 1 with probability p. Since the event 
{N1(t) = m, N2(t) = k} is a subset of the conditioning event above, 

Pr{N1(t)=m,N2(t)=k}
Pr{N1(t)=m,N2(t)=k | N(t)=m+k} = 

Pr{N(t)=m+k} 
. 

Combining this with (2.25), we have 

Pr{N1(t)=m,N2(t)=k} =
(m + k!) 

p m(1 � p)k (�t)m+ke��t 

. (2.26) 
m!k! (m + k)! 

Rearranging terms, we get 

Pr{N1(t)=m,N2(t)=k} =
(p�t)me��pt [(1 � p)�t]ke��(1�p)t 

. (2.27) 
m! k! 
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This shows that N1(t) and N2(t) are independent. To show that the processes are indepen
dent, we must show that for any k > 1 and any set of times 0  t1  t2  · · ·  tk, the sets 
{N1(ti); 1  i  k} and {N2(tj); 1  j  k} are independent of each other. It is equivalent 
to show that the sets {Ne1(ti�1, ti); 1  i  k} and {Ne2(tj�1, tj ); 1  j  k} (where t0 is 0) 
are independent. The argument above shows this independence for i = j, and for i =6 j, the 
independence follows from the independent increment property of {N(t); t > 0}. 

2.3.2 Examples using independent Poisson processes 

We have observed that if the arrivals of a Poisson process are split into two new arrival 
processes, each arrival of the original process independently going into the first of the new 
processes with some fixed probability p, then the new processes are Poisson processes and 
are independent. The most useful consequence of this is that any two independent Poisson 
processes can be viewed as being generated from a single process in this way. Thus, if one 
process has rate �1 and the other has rate �2, they can be viewed as coming from a process 
of rate �1 +�2. Each arrival to the combined process is then labeled as a first process arrival 
with probability p = �1/(�1 + �2) and as a second process arrival with probability 1 � p. 

The above point of view is very useful for finding probabilities such as Pr{S1k < S2j} where 
S1k is the epoch of the kth arrival to the first process and S2j is the epoch of the jth arrival 
to the second process. The problem can be rephrased in terms of a combined process to 
ask: out of the first k + j � 1 arrivals to the combined process, what is the probability that 
k or more of them are switched to the first process? (Note that if k or more of the first 
k + j � 1 go to the first process, at most j � 1 go to the second, so the kth arrival to the 
first precedes the jth arrival to the second; similarly if fewer than k of the first k + j � 1 
go to the first process, then the jth arrival to the second process precedes the kth arrival 
to the first). Since each of these first k + j � 1 arrivals are switched independently with the 
same probability p, the answer is 

Pr{S1k < S2j } = 
Xk+j�1 (k + j � 1)! 

p i(1 � p)k+j�1�i . (2.28)
i=k i!(k + j � 1 � i)!

Example 2.3.1. [The M/M/1 queue] Queueing theorists use a standard notation of char
acters separated by slashes to describe common types of queueing systems. The first char
acter describes the arrival process to the queue. M stands for memoryless and means a 
Poisson arrival process; D stands for deterministic and means that the interarrival interval 
is fixed and non-random; G stands for general interarrival distribution. We assume that 
the interarrival intervals are IID (thus making the arrival process a renewal process), but 
many authors use GI to explicitly indicate IID interarrivals. The second character describes 
the service process. The same letters are used, with M indicating an exponential service 
time distribution. The third character gives the number of servers. It is assumed, when 
this notation is used, that the service times are IID, independent of the arrival times, and 
independent of which server is used. 

Consider an M/M/1 queue, i.e., a queueing system with a Poisson arrival system (say 
of rate �) and a single server who serves arriving customers in order with a service time 
distribution F(y) = 1 � exp[�µy]. Thus during periods when the server is busy, customers 
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leave the system according to a Poisson process (process 2) of rate µ. We then see that if 
j or more customers are waiting at a given time, then (2.28) gives the probability that the 
kth subsequent arrival comes before the jth departure. 

2.4 Non-homogeneous Poisson processes 

The Poisson process, as we defined it, is characterized by a constant arrival rate �. It is 
often useful to consider a more general type of process in which the arrival rate varies as a 
function of time. A non-homogeneous Poisson process with time varying arrival rate �(t) is 
defined9 as a counting process {N(t); t > 0} which has the independent increment property 
and, for all t � 0, � > 0, also satisfies: 

Pr
n
N(t, t + �) = 0

o 
= 1 � ��(t) + o(�)e

Pr
n
N(t, t + �) = 1

o 
= ��(t) + o(�)e

Pr
n
N(t, t + �) � 2

o 
= o(�).	 (2.29)e

where N(t, t + �) = N(t + �) � N(t). The non-homogeneous Poisson process does not have e
the stationary increment property. 

One common application occurs in optical communication where a non-homogeneous Pois
son process is often used to model the stream of photons from an optical modulator; the 
modulation is accomplished by varying the photon intensity �(t). We shall see another 
application shortly in the next example. Sometimes a Poisson process, as we defined it 
earlier, is called a homogeneous Poisson process. 

We can use a “shrinking Bernoulli process” again to approximate a non-homogeneous Pois
son process. To see how to do this, assume that �(t) is bounded away from zero. We 
partition the time axis into increments whose lengths � vary inversely with �(t), thus hold
ing the probability of an arrival in an increment at some fixed value p = ��(t). Thus, 
temporarily ignoring the variation of �(t) within an increment, 

p
Pr
⇢	

N 

✓
t, t + 

�(t) 

◆ 
= 0

� 
= 1 � p + o(p)e

p
Pr
⇢

Ne
✓

t, t + 
�(t) 

◆ 
= 1

� 
= p + o(p) 

p
Pr
⇢

N 

✓
t, t + 

◆ 
� 2

� 
= o(✏).	 (2.30)e

�(t) 

This partition is defined more precisely by defining m(t) as 

m(t) = 
Z t 

�(⌧)d⌧.	 (2.31) 
0 

9We assume that �(t) is right continuous, i.e., that for each t, �(t) is the limit of �(t+✏) as ✏ approaches 0 
from above. This allows �(t) to contain discontinuities, as illustrated in Figure 2.7, but follows the convention 
that the value of the function at the discontinuity is the limiting value from the right. This convention is 
required in (2.29) to talk about the distribution of arrivals just to the right of time t. 
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Then the ith increment ends at that t for which m(t) = i p. 

r
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@ 
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�(t) 

Figure 2.7: Partitioning the time axis into increments each with an expected number 
of arrivals equal to p. Each rectangle or trapezoid above has the same area, which 
ensures that the ith partition ends where m(t) = i p. 

As before, let {Yi; i � 1} be a sequence of IID binary rv’s with Pr{Yi = 1} = p and 
Pr{Yi = 0} = 1 � p. Consider the counting process {N(t); t > 0} in which Yi, for each 
i � 1, denotes the number of arrivals in the interval (ti�1, ti], where ti satisfies m(ti) = i p. 
Thus, N(ti) = Y1 + Y2 + + Yi. If p is decreased as 2�j , each increment is successively · · · 
split into a pair of increments. Thus by the same argument as in (2.22), 

[1 + o(p)][m(t)]n exp[�m(t)]
Pr{N(t) = n} = . (2.32) 

n! 

Similarly, for any interval (t, ⌧ ], taking m(t, ⌧) = 
R
t
⌧ �(u)du, and taking t = tk, ⌧ = ti for 

some k, i, we get 
e 

[1 + o(p)][m(t, ⌧)]n exp[� e m(t, ⌧)]
Pr
n
Ne(t, ⌧) = n

o 
= 

e 
n! 

. (2.33) 

Going to the limit p ! 0, the counting process {N(t); t > 0} above approaches the non
homogeneous Poisson process under consideration, and we have the following theorem: 

Theorem 2.4.1. For a non-homogeneous Poisson process with right-continuous arrival 
rate �(t) bounded away from zero, the distribution of N(t, ⌧), the number of arrivals in 
(t, ⌧ ], satisfies 

e

Pr
n
N(t, ⌧) = n

o 
=

[m(t, ⌧)]n exp[�me (t, ⌧)] 
where m(t, ⌧) = 

Z ⌧ 

�(u) du. (2.34)e e 
n! 

e 
t 

Hence, one can view a non-homogeneous Poisson process as a (homogeneous) Poisson 
process over a non-linear time scale. That is, let {N⇤(s); s � 0} be a (homogeneous) 
Poisson process with rate 1. The non-homogeneous Poisson process is then given by 
N(t) = N⇤(m(t)) for each t. 

Example 2.4.1 (The M/G/1 Queue). Using the queueing notation explained in Ex
ample 2.3.1, an M/G/1 queue indicates a queue with Poisson arrivals, a general service 
distribution, and an infinite number of servers. Since the M/G/1 queue has an infinite 
number of servers, no arriving customers are ever queued. Each arrival immediately starts 
to be served by some server, and the service time Yi of customer i is IID over i with some 
given distribution function G(y); the service time is the interval from start to completion 
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G(⌧�t) 

N1(⌧) = Customers in service at ⌧ 
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-
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H
H

H N(⌧) � N1(⌧) = Customers departed by ⌧ 

Figure 2.8: Poisson arrivals {N(t); t > 0} can be considered to be split in a non
homogeneous way. An arrival at t is split with probability 1 � G(⌧ � t) into a process 
of customers still in service at ⌧ . 

of service and is also independent of arrival epochs. We would like to find the distribution 
function of the number of customers being served at a given epoch ⌧ . 

Let {N(t); t > 0} be the Poisson counting process, at rate �, of customer arrivals. Consider 
the arrival times of those customers that are still in service at some fixed time ⌧ . In some 
arbitrarily small interval (t, t+�], the probability of an arrival is ��+o(�) and the probability 
of 2 or more arrivals is negligible (i.e., o(�)). The probability that a customer arrives in 
(t, t + �] and is still being served at time ⌧ > t is then ��[1 � G(⌧ � t)] + o(�). Consider 
a counting process {N1(t); 0<t⌧ } where N1(t) is the number of arrivals between 0 and t 
that are still in service at ⌧ . This counting process has the independent increment property. 
To see this, note that the overall arrivals in {N(t); t > 0} have the independent increment 
property; also the arrivals in {N(t); t > 0} have independent service times, and thus are 
independently in or not in {N1(t); 0 < t  ⌧ }. It follows that {N1(t); 0 < t  ⌧ } is a 
non-homogeneous Poisson process with rate �[1 � G(⌧ � t)] at time t  ⌧ . The expected 
number of arrivals still in service at time ⌧ is then 

m(⌧ ) = � 
Z ⌧ 

[1 � G(⌧ � t)] dt = � 
Z ⌧ 

[1 � G(t)] dt. (2.35) 
t=0 t=0 

and the PMF of the number in service at time ⌧ is given by 

Pr{N1(⌧) = n} = 
m(⌧)n exp(�m(⌧)) 

. (2.36) 
n! 

Note that as ⌧ !1, the integral in (2.35) approaches the mean of the service time distri
bution (i.e., it is the integral of the complementary distribution function, 1 � G(t), of the 
service time). This means that in steady state (as ⌧ ! 1), the distribution of the num
ber in service at ⌧ depends on the service time distribution only through its mean. This 
example can be used to model situations such as the number of phone calls taking place 
at a given epoch. This requires arrivals of new calls to be modeled as a Poisson process 
and the holding time of each call to be modeled as a random variable independent of other 
holding times and of call arrival times. Finally, as shown in Figure 2.8, we can regard 
{N1(t); 0<t  ⌧} as a splitting of the arrival process {N(t); t>0}. By the same type of 
argument as in Section 2.3, the number of customers who have completed service by time 
⌧ is independent of the number still in service. 
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2.5 Conditional arrival densities and order statistics 

A diverse range of problems involving Poisson processes are best tackled by conditioning on 
a given number n of arrivals in the interval (0, t], i.e., on the event N(t) = n. Because of 
the incremental view of the Poisson process as independent and stationary arrivals in each 
incremental interval of the time axis, we would guess that the arrivals should have some 
sort of uniform distribution given N(t) = n. More precisely, the following theorem shows 
that the joint density of S (n) = (S1, S2, . . . , Sn) given N(t) = n is uniform over the region 
0 < S1 < S2 < < Sn < t.· · · 

Theorem 2.5.1. Let fS(n)|N(t)(s
(n) | n) be the joint density of S(n) conditional on N(t) = n. 

This density is constant over the region 0 < s1 < < sn < t and has the value · · · 

n! 
fS(n)|N(t)(s

(n) | n) = 
tn . (2.37) 

Two proofs are given, each illustrative of useful techniques. 

Proof 1: Recall that the joint density of the first n + 1 arrivals S (n+1) = (S1 . . . , Sn, Sn+1) 
with no conditioning is given in (2.15). We first use Bayes law to calculate the joint density 
of S (n+1) conditional on N(t) = n. 

fS (n+1)|N(t)(s
(n+1) | n) pN(t)(n) = pN(t)|S (n+1) (n|s(n+1))fS (n+1) (s(n+1)). 

Note that N(t) = n if and only if Sn  t and Sn+1 > t. Thus pN(t)|S (n+1) (n s(n+1)) is 1 if 
Sn  t and Sn+1 > t and is 0 otherwise. Restricting attention to the case N(

|
t) = n, Sn  t 

and Sn+1 > t, 

fS (n+1) N(t)(s
(n+1) n) = 

fS (n+1) (s(n+1)) 
| | 

pN(t)(n) 
�n+1 exp(��sn+1)= 
(�t)n exp(��t) /n! 

= 
n!� exp(��(sn+1 � t) 

. (2.38)
tn 

This is a useful expression, but we are interested in S (n) rather than S (n+1). Thus we break 
up the left side of (2.38) as follows: 

fS (n+1)|N(t)(s
(n+1) | n) = fS (n)|N(t)(s

(n) | n) fSn+1|S (n)N(t)(sn+1|s(n), n). 

Conditional on N(t) = n, Sn+1 is the first arrival epoch after t, which by the memoryless 
property is independent of S (n). Thus that final term is simply � exp(��(sn+1 � t)) for 
sn+1 > t. Substituting this into (2.38), the result is (2.37). 

Proof 2: This alternative proof derives (2.37) by looking at arrivals in very small increments 
of size � (see Figure 2.9). For a given t and a given set of n times, 0 < s1 < , < sn < t, we · · · 
calculate the probability that there is a single arrival in each of the intervals (si, si + �], 1 
i  n and no other arrivals in the interval (0, t]. Letting A(�) be this event, 
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0 s1 s2 s3 t 

� - � � - � � - � 

Figure 2.9: Intervals for arrival density.


Pr{A(�)} = pN(s1)(0) p e(1) pN(s1+�,s2)
(0) pN(s2,s2+�)(1) pN(sn+�,t)(0).· · · ee

e

N(s1,s1+�)

The sum of the lengths of the above intervals is t, so if we represent pN(si,si+�)(1) as 

e

�� exp(���) + o(�) for each i, then


Pr{A(�)} = (��)n exp(��t) + �n�1 o(�).


The event A(�) can be characterized as the event that, first, N(t) = n and, second, that 
the n arrivals occur in (si, si+�] for 1  i  n. Thus we conclude that 

fS (n) N(t)(s
(n)) = lim 

Pr{A(�)}
|

�!0 �npN(t)(n)
, 

which simplifies to (2.37). 

The joint density of the interarrival intervals, X (n) = (X1 . . . ,Xn) given N(t) = n can be 
found directly from Theorem 2.5.1 simply by making the linear transformation X1 = S1 

and Xi = Si � Si�1 for 2  i  n. The density is unchanged, but the constraint region 
transforms into 

Pn Xi < t with Xi > 0 for 1  i  n (see Figure 2.10). i=1 

� 
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� 
� 

� 
� 

�
� @ 

@ 
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@ 
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@
@ 

s2 

@
@R 

x2 

s1 x1 

Figure 2.10: Mapping from arrival epochs to interarrival times. Note that incremental 
cubes in the arrival space map to parallelepipeds of the same volume in the interarrival 
space. 

(n)fX (n)|N(t)(x | n) = 
n! 

for X (n) > 0, 
Xn 

Xi < t. (2.39)
tn i=1 



91 2.5. CONDITIONAL ARRIVAL DENSITIES AND ORDER STATISTICS 

It is also instructive to compare the joint distribution of S (n) conditional on N(t) = n with 
the joint distribution of n IID uniformly distributed random variables, U (n) = (U1, . . . , Un) 
on (0, t]. For any point U (n) = u (n), this joint density is 

fU (n) (u (n)) = 1/tn for 0 < ui  t, 1  i  n. 

Both fS (n) and fU (n) are uniform over the volume of n-space where they are non-zero, but 
as illustrated in Figure 2.11 for n = 2, the volume for the latter is n! times larger than the 
volume for the former. To explain this more fully, we can define a set of random variables 
S1, . . . , Sn, not as arrival epochs in a Poisson process, but rather as the order statistics 
function of the IID uniform variables U1, . . . , Un; that is 

S1 = min(U1, . . . , Un); S2 = 2nd smallest (U1, . . . , Un); etc. 
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Figure 2.11: Density for the order statistics of an IID 2-dimensional uniform distri
bution. Note that the square over which fU (2) is non-zero contains one triangle where 
u2 > u1 and another of equal size where u1 > u2. Each of these maps, by a permutation 
mapping, to the single triangle where s2 > s1. 

The n-cube is partitioned into n! regions, one where u1 < u2 < < un. For each· · · 
permutation ⇡(i) of the integers 1 to n, there is another region10 where u⇡(1) < u⇡(2) < 

< u⇡(n). By symmetry, each of these regions has the same volume, which then must be· · · 
1/n! of the volume tn of the n-cube. 

All of these n! regions map to the same region of ordered values. Thus these order statistics 
have the same joint probability density function as the arrival epochs S1, . . . , Sn conditional 
on N(t) = n. Anything we know (or can discover) about order statistics is valid for arrival 
epochs given N(t) = n and vice versa.11 

Next we want to find the marginal distribution functions of the individual Si, conditional on 
N(t) = n. Starting with S1, and viewing it as the minimum of the IID uniformly distributed 

10As usual, we are ignoring those points where ui = uj for some i, j, since the set of such points has 0 
probability. 

11There is certainly also the intuitive notion, given n arrivals in (0, t], and given the stationary and 
independent increment properties of the Poisson process, that those n arrivals can be viewed as uniformly 
distributed. One way to view this is to visualize the Poisson process as the sum of a very large number k of 
independent processes of rate �/k each. Then, given N(t) = n, with k >> n, there is negligible probability 
of more than one arrival from any one process, and for each of the n processes with arrivals, that arrival is 
uniformly distributed in (0, t]. 
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variables U1, . . . , Un, we recognize that S1 > ⌧ if and only if Ui > ⌧ for all i, 1  i  n. 
Thus, 

Pr{S1 > ⌧ | N(t)=n} = 


t � 

t

⌧ 
�n 

for 0 < ⌧  t. (2.40) 

For S2 to Sn, the density is slightly simpler in appearance than the distribution function. 
To find fSi|N(t)(si | n), look at n uniformly distributed rv’s in (0, t]. The probability that 
one of these lies in the interval (si, si + dt] is (ndt)/t. Out of the remaining n � 1, the 
probability that i � 1 lie in the interval (0, si] is given by the binomial distribution with 
probability of success si/t. Thus the desired density is 

s i�1(t � si)n�i(n � 1)! ndt 
fSi|N(t)(x | n) dt = i 

tn�1(n � i)!(i � 1)! t 

ifSi|N(t)(si n) = 
s i�1(t � si)n�in! 

(2.41)| 
tn(n � i)!(i � 1)!

. 

It is easy to find the expected value of S1 conditional on N(t) = n by integrating the 
complementary distribution function in (2.40), getting 

t 
E [S1 | N(t)=n] = 

n + 1
. (2.42) 

We come back later to find E [Si | N(t) = n] for 2  i  n. First, we look at the marginal 
distributions of the interarrival intervals. Recall from (2.39) that 

fX (n)|N(t)(x (n) | n) = 
t

n
n 

! 
for X (n) > 0, 

Xn

i=1 
Xi < t. (2.43) 

The joint density is the same for all points in the constraint region, and the constraint 
does not distinguish between X1 to Xn. Thus X1, . . . ,Xn must all have the same marginal 
distribution, and more generally the marginal distribution of any subset of the Xi can 
depend only on the size of the subset. We have found the distribution of S1, which is the 
same as X1, and thus 

Pr{Xi > ⌧ | N(t)=n} = 


t � 

t

⌧ 
�n 

for 1  i  n and 0 < ⌧  t. (2.44) 

t 
E [Xi | N(t)=n] = 

n + 1 
for 1  i  n. (2.45) 

From this, we see immediately that for 1  i  n, 

it 
E [Si | N(t) = n] = 

n + 1 
(2.46) 

One could go on and derive joint distributions of all sorts at this point, but there is one 
additional type of interval that must be discussed. Define Xn

⇤
+1 = t � Sn to be the interval 

from the largest arrival epoch before t to t itself. Rewriting (2.43), 

fX (n)|N(t)(x (n) | n) = 
t

n
n 

! 
for X (n) > 0, Xn

⇤
+1 > 0, 

X
i

n 

=1 
Xi + Xn

⇤
+1 = t. 
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The constraints above are symmetric in X1, . . . ,Xn,Xn
⇤
+1, and, within the constraint re

gion, the joint density of X1, . . . ,Xn (conditional on N(t) = n) is uniform. Note that there 
is no joint density over X1, . . . ,Xn,Xn

⇤
+1 condtional on n(t) = n, since Xn

⇤
+1 is then a de

terministic function of X1, . . . ,Xn. However, the density over X1, . . . ,Xn can be replaced 
by a density over any other n rv’s out of X1, . . . ,Xn,Xn

⇤
+1 by a linear transformation with 

unit determinant. Thus Xn
⇤
+1 has the same marginal distribution as each of the Xi. This 

gives us a partial check on our work, since the interval (0, t] is divided into n + 1 intervals of 
sizes X1,X2, . . . ,Xn,Xn

⇤
+1, and each of these has a mean size t/(n + 1). We also see that 

the joint distribution function of any proper subset of X1,X2, . . .Xn, Xn
⇤
+1 is independent 

of the order of the variables. 

One important consequece of this is that we can look at a segment (0, t] of a Poisson 
process either forward or backward in time and it ‘looks the same.’ Looked at backwards, 
the interarrival intervals are Xn

⇤
+1,Xn, . . . ,X2. These intervals are IID, and X1 is then 

determined as t � Xn
⇤
+1 � Xn � · · · � X2. We will not make any particular use of this 

property here, but we will later explore this property of time-reversibility for other types of 
processes. For Poisson processes, this reversibility is intuitively obvious from the stationary 
and independent properties. It is less obvious how to express this condition by equations, 
but that is not really necessary at this point. 

2.6 Summary 

We started the chapter with three equivalent definitions of a Poisson process—first as a 
renewal process with exponentially distributed inter-renewal intervals, second as a station
ary and independent increment counting process with Poisson distributed arrivals in each 
interval, and third essentially as a limit of shrinking Bernoulli processes. We saw that each 
definition provided its own insights into the properties of the process. We emphasized the 
importance of the memoryless property of the exponential distribution, both as a useful 
tool in problem solving and as an underlying reason why the Poisson process is so simple. 

We next showed that the sum of independent Poisson processes is again a Poisson process. 
We also showed that if the arrivals in a Poisson process are independently routed to di↵erent 
locations with some fixed probability assignment, then the arrivals at these locations form 
independent Poisson processes. This ability to view independent Poisson processes either 
independently or as a splitting of a combined process is a powerful technique for finding 
almost trivial solutions to many problems. 

It was next shown that a non-homogeneous Poisson process could be viewed as a (ho
mogeneous) Poisson process on a non-linear time scale. This allows all the properties of 
(homogeneous) Poisson properties to be applied directly to the non-homogeneous case. The 
simplest and most useful result from this is (2.34), showing that the number of arrivals in 
any interval has a Poisson PMF. This result was used to show that the number of cus
tomers in service at any given time ⌧ in an M/G/1 queue has a Poisson PMF with a mean 
approaching � times the expected service time in the limit as ⌧ !1. 

Finally we looked at the distribution of arrival epochs conditional on n arrivals in the 
interval (0, t]. It was found that these arrival epochs had the same joint distribution as the 
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order statistics of n uniform IID rv’s in (0, t]. By using symmetry and going back and forth 
between the uniform variables and the Poisson process arrivals, we found the distribution 
of the interarrival times, the arrival epochs, and various conditional distributions. 

2.7 Exercises 

Exercise 2.1. a) Find the Erlang density fSn (t) by convolving fX (x) = � exp(��x) with 
itself n times. 

b) Find the moment generating function of X (or find the Laplace transform of fX (x)), and 
use this to find the moment generating function (or Laplace transform) of Sn = X1 + X2 + 

+ Xn. Invert your result to find fSn (t).· · · 

c) Find the Erlang density by starting with (2.15) and then calculating the marginal density 
for Sn. 

Exercise 2.2. a) Find the mean, variance, and moment generating function of N(t), as 
given by (2.16). 

b) Show by discrete convolution that the sum of two independent Poisson rv’s is again 
Poisson. 

c) Show by using the properties of the Poisson process that the sum of two independent 
Poisson rv’s must be Poisson. 

Exercise 2.3. The purpose of this exercise is to give an alternate derivation of the Poisson 
distribution for N(t), the number of arrivals in a Poisson process up to time t. Let � be 
the rate of the process. 

a) Find the conditional probability Pr{N(t) = n | Sn = ⌧} for all ⌧  t. 

b) Using the Erlang density for Sn, use (a) to find Pr{N(t) = n}. 

Exercise 2.4. Assume that a counting process {N(t); t>0} has the independent and sta
tionary increment properties and satisfies (2.16) (for all t > 0). Let X1 be the epoch of the 
first arrival and Xn be the interarrival time between the n � 1st and the nth arrival. Use 
only these assumptions in doing the following parts of this exercise. 

a) Show that Pr{X1 > x} = e��x . 

b) Let Sn�1 be the epoch of the n � 1st arrival. Show that Pr{Xn > x | Sn�1 = ⌧} = e��x . 

c) For each n > 1, show that Pr{Xn > x} = e��x and that Xn is independent of Sn�1. 

d) Argue that Xn is independent of X1,X2, . . .Xn�1. 

Exercise 2.5. The point of this exercise is to show that the sequence of PMF’s for a 
Bernoulli counting process does not specify the process. In other words, knowing that N(t) 
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satisfies the binomial distribution for all t does not mean that the process is Bernoulli. This 
helps us understand why the second definition of a Poisson process requires stationary and 
independent increments as well as the Poisson distribution for N(t). 

a) Let Y1, Y2, Y3, . . . be a sequence of binary rv’s in which each rv is 0 or 1 with equal 
probability. Find a joint distribution for Y1, Y2, Y3 that satisfies the binomial distribution, 
pN(t)(k) = 

�
k
t�2�k for t = 1, 2, 3 and 0  k  t, but for which Y1, Y2, Y3 are not independent. 

One simple solution for this contains four 3-tuples with probability 1/8 each, two 3-tuples 
with probability 1/4 each, and two 3-tuples with probability 0. Note that by making the 
subsequent arrivals IID and equiprobable, you have an example where N(t) is binomial for 
all t but the process is not Bernoulli. Hint: Use the binomial for t = 3 to find two 3-tuples 
that must have probability 1/8. Combine this with the binomial for t = 2 to find two other 
3-tuples that must have probability 1/8. Finally look at the constraints imposed by the 
binomial distribution on the remaining four 3-tuples. 

b) Generalize part a) to the case where Y1, Y2, Y3 satisfy Pr{Yi = 1} = p and Pr{Yi = 0} = 
1 � p. Assume p < 1/2 and find a joint distribution on Y1, Y2, Y3 that satisfies the binomial 
distribution, but for which the 3-tuple (0, 1, 1) has zero probability. 

c) More generally yet, view a joint PMF on binary t-tuples as a nonnegative vector in a 2t 

dimensional vector space. Each binomial probability pN(⌧)(k) = 
�⌧
k

�
pk(1 �p)⌧�k constitutes 

a linear constraint on this vector. For each ⌧ , show that one of these constraints may be 
replaced by the constraint that the components of the vector sum to 1. 

d) Using part c), show that at most (t + 1)t/2 + 1 of the binomial constraints are linearly 
independent. Note that this means that the linear space of vectors satisfying these binomial 
constraints has dimension at least 2t � (t + 1)t/2 � 1. This linear space has dimension 1 
for t = 3, explaining the results in parts a) and b). It has a rapidly increasing dimension 
for t > 3, suggesting that the binomial constraints are relatively ine↵ectual for constraining 
the joint PMF of a joint distribution. More work is required for the case of t > 3 because 
of all the inequality constraints, but it turns out that this large dimensionality remains. 

Exercise 2.6. Let h(x) be a positive function of a real variable that satisfies h(x + t) = 
h(x) + h(t) and let h(1) = c. 

a) Show that for integer k > 0, h(k) = kc. 

b) Show that for integer j > 0, h(1/j) = c/j. 

c) Show that for all integer k, j, h(k/j) = ck/j. 

d) The above parts show that h(x) is linear in positive rational numbers. For very picky 
mathematicians, this does not guarantee that h(x) is linear in positive real numbers. Show 
that if h(x) is also monotonic in x, then h(x) is linear in x > 0. 

Exercise 2.7. Assume that a counting process {N(t); t>0} has the independent and sta
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tionary increment properties and, for all t > 0, satisfies 

Pr
n
N(t, t + �) = 0

o 
= 1 � �� + o(�)e

Pr
n
N(t, t + �) = 1

o 
= �� + o(�)e

Pr
n
N(t, t + �) > 1

o 
= o(�).e

a) Let F0(⌧) = Pr{N(⌧) = 0} and show that dF0(⌧)/d⌧ = ��F0(⌧ ).


b) Show that X1, the time of the first arrival, is exponential with parameter �.


c) Let Fn(⌧) = Pr
n
Ne(t, t + ⌧ ) = 0 | Sn�1 = t

o 
and show that dFn(⌧)/d⌧ = ��Fn(⌧).


d) Argue that Xn is exponential with parameter � and independent of earlier arrival times.


Exercise 2.8. Let t > 0 be an arbitrary time, let Z1 be the duration of the interval from

t until the next arrival after t. Let Zm, for each m > 1, be the interarrival time from the

epoch of the m � 1st arrival after t until the mth arrival.


a) Given that N(t) = n, explain why Zm = Xm+n for m > 1 and Z1 = Xn+1 � t + Sn.


b) Conditional on N(t) = n and Sn = ⌧ , show that Z1, Z2, . . . are IID.


c) Show that Z1, Z2, . . . are IID.


Exercise 2.9. Consider a “shrinking Bernoulli” approximation N�(m�) = Y1 + + Ym to· · · 
a Poisson process as described in Subsection 2.2.5. 

a) Show that 

Pr{N�(m�) = n} = 

✓
m
◆

(��)n(1 � ��)m�n . 
n 

b) Let t = m�, and let t be fixed for the remainder of the exercise. Explain why 

lim Pr{N�(t) = n} = lim 

✓
m
◆✓

�t
◆n ✓

1 � 
�t
◆m�n 

. 
�!0 m!1 n m m 

where the limit on the left is taken over values of � that divide t. 

c) Derive the following two equalities: 

lim 

✓
m
◆ 

1 
= 

1
; and lim 

✓
1 � 

�t
◆m�n 

= e��t . 
m!1 n mn n! m!1 m 

d) Conclude from this that for every t and every n, lim�!0 Pr{N�(t)=n} = Pr{N(t)=n}
where {N(t); t > 0} is a Poisson process of rate �. 
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Exercise 2.10. Let {N(t); t > 0} be a Poisson process of rate �. 

a) Find the joint probability mass function (PMF) of N(t), N(t + s) for s > 0. 

b) Find E [N(t) N(t + s)] for s > 0.· 

c) Find E 
h
N(t1, t3) N(t2, t4)

i 
where N(t, ⌧) is the number of arrivals in (t, ⌧ ] and t1 <e · e e

t2 < t3 < t4. 

Exercise 2.11. An elementary experiment is independently performed N times where N 
is a Poisson rv of mean �. Let {a1, a2, . . . , aK } be the set of sample points of the elementary 
experiment and let pk, 1  k  K, denote the probability of ak. 

a) Let Nk denote the number of elementary experiments performed for which the output is 
ak. Find the PMF for Nk (1  k  K). (Hint: no calculation is necessary.) 

b) Find the PMF for N1 + N2. 

c) Find the conditional PMF for N1 given that N = n. 

d) Find the conditional PMF for N1 + N2 given that N = n. 

e) Find the conditional PMF for N given that N1 = n1. 

Exercise 2.12. Starting from time 0, northbound buses arrive at 77 Mass. Avenue accord
ing to a Poisson process of rate �. Passengers arrive according to an independent Poisson 
process of rate µ. When a bus arrives, all waiting customers instantly enter the bus and 
subsequent customers wait for the next bus. 

a) Find the PMF for the number of customers entering a bus (more specifically, for any 
given m, find the PMF for the number of customers entering the mth bus). 

b) Find the PMF for the number of customers entering the mth bus given that the inter-
arrival interval between bus m � 1 and bus m is x. 

c) Given that a bus arrives at time 10:30 PM, find the PMF for the number of customers 
entering the next bus. 

d) Given that a bus arrives at 10:30 PM and no bus arrives between 10:30 and 11, find the 
PMF for the number of customers on the next bus. 

e) Find the PMF for the number of customers waiting at some given time, say 2:30 PM 
(assume that the processes started infinitely far in the past). Hint: think of what happens 
moving backward in time from 2:30 PM. 

f) Find the PMF for the number of customers getting on the next bus to arrive after 2:30. 
(Hint: this is di↵erent from part a); look carefully at part e). 

g) Given that I arrive to wait for a bus at 2:30 PM, find the PMF for the number of 
customers getting on the next bus. 
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Exercise 2.13. a) Show that the arrival epochs of a Poisson process satisfy 

fS (n)|Sn+1 
(s(n)|sn+1) = n!/sn

n 
+1. 

Hint: This is easy if you use only the results of Section 2.2.2. 

b) Contrast this with the result of Theorem 2.5.1 

Exercise 2.14. Equation (2.41) gives fSi (si | N(t)=n), which is the density of random 
variable Si conditional on N(t) = n for n � i. Multiply this expression by Pr{N(t) = n}
and sum over n to find fSi (si); verify that your answer is indeed the Erlang density. 

Exercise 2.15. Consider generalizing the bulk arrival process in Figure 2.5. Assume that 
the epochs at which arrivals occur form a Poisson process {N(t); t > 0} of rate �. At each 
arrival epoch, Sn, the number of arrivals, Zn, satisfies Pr{Zn=1} = p, Pr{Zn=2)} = 1 � p. 
The variables Zn are IID. 

a) Let {N1(t); t > 0} be the counting process of the epochs at which single arrivals occur. 
Find the PMF of N1(t) as a function of t. Similarly, let {N2(t); t � 0} be the counting 
process of the epochs at which double arrivals occur. Find the PMF of N2(t) as a function 
of t. 

b) Let {NB(t); t � 0} be the counting process of the total number of arrivals. Give an 
expression for the PMF of NB(t) as a function of t. 

Exercise 2.16. a) For a Poisson counting process of rate �, find the joint probability 
density of S1, S2, . . . , Sn�1 conditional on Sn = t. 

b) Find Pr{X1 > ⌧ | Sn =t}. 

c) Find Pr{Xi > ⌧ | Sn =t} for 1  i  n. 

d) Find the density fSi|Sn (si|t) for 1  i  n � 1. 

e) Give an explanation for the striking similarity between the condition N(t) = n � 1 and 
the condition Sn = t. 

Exercise 2.17. a) For a Poisson process of rate �, find Pr{N(t)=n | S1 =⌧} for t > ⌧ and 
n � 1. 

b) Using this, find fS1 (⌧ | N(t)=n) 

c) Check your answer against (2.40). 

Exercise 2.18. Consider a counting process in which the rate is a rv ⇤ with probability 
density f⇤(�) = ↵e�↵� for � > 0. Conditional on a given sample value � for the rate, the 
counting process is a Poisson process of rate � (i.e., nature first chooses a sample value � 
and then generates a sample path of a Poisson process of that rate �). 
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a) What is Pr{N(t)=n | ⇤=�}, where N(t) is the number of arrivals in the interval (0, t] 
for some given t > 0? 

b) Show that Pr{N(t)=n}, the unconditional PMF for N(t), is given by 

↵tn 

Pr{N(t)=n} =
(t + ↵)n+1 . 

c) Find f⇤(� | N(t)=n), the density of � conditional on N(t)=n. 

d) Find E [⇤ | N(t)=n] and interpret your result for very small t with n = 0 and for very 
large t with n large. 

e) Find E [⇤ | N(t)=n, S1, S2, . . . , Sn]. (Hint: consider the distribution of S1, . . . , Sn con
ditional on N(t) and ⇤). Find E [⇤ | N(t)=n,N(⌧)=m] for some ⌧ < t. 

Exercise 2.19. a) Use Equation (2.41) to find E [Si | N(t)=n]. Hint: When you integrate 
sifSi (si | N(t)=n), compare this integral with fSi+1 (si | N(t)=n + 1) and use the fact that 
the latter expression is a probability density. 

b) Find the second moment and the variance of Si conditional on N(t)=n. Hint: Extend 
the previous hint. 

c) Assume that n is odd, and consider i = (n + 1)/2. What is the relationship between Si, 
conditional on N(t)=n, and the sample median of n IID uniform random variables. 

d) Give a weak law of large numbers for the above median. 

Exercise 2.20. Suppose cars enter a one-way infinite length, infinite lane highway at a 
Poisson rate �. The ith car to enter chooses a velocity Vi and travels at this velocity. 
Assume that the Vi’s are independent positive rv’s having a common distribution F. Derive 
the distribution of the number of cars that are located in an interval (0, a) at time t. 

Exercise 2.21. Consider an M/G/1 queue, i.e., a queue with Poisson arrivals of rate � 
in which each arrival i, independent of other arrivals, remains in the system for a time Xi, 
where {Xi; i � 1} is a set of IID rv’s with some given distribution function F(x). 

You may assume that the number of arrivals in any interval (t, t + ✏) that are still in the 
system at some later time ⌧ � t + ✏ is statistically independent of the number of arrivals in 
that same interval (t, t + ✏) that have departed from the system by time ⌧ . 

a) Let N(⌧) be the number of customers in the system at time ⌧ . Find the mean, m(⌧), of 
N(⌧) and find Pr{N(⌧) = n}. 

b) Let D(⌧) be the number of customers that have departed from the system by time ⌧ . 
Find the mean, E [D(⌧)], and find Pr{D(⌧) = d}. 

c) Find Pr{N(⌧) = n,D(⌧) = d}. 

d) Let A(⌧) be the total number of arrivals up to time ⌧ . Find Pr{N(⌧) = n | A(⌧) = a}. 

e) Find Pr{D(⌧ + ✏) � D(⌧ ) = d}. 
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Exercise 2.22. The voters in a given town arrive at the place of voting according to 
a Poisson process of rate � = 100 voters per hour. The voters independently vote for 
candidate A and candidate B each with probability 1/2. Assume that the voting starts at 
time 0 and continues indefinitely. 

a) Conditional on 1000 voters arriving during the first 10 hours of voting, find the probability 
that candidate A receives n of those votes. 

b) Again conditional on 1000 voters during the first 10 hours, find the probability that 
candidate A receives n votes in the first 4 hours of voting. 

c) Let T be the epoch of the arrival of the first voter voting for candidate A. Find the 
density of T . 

d) Find the PMF of the number of voters for candidate B who arrive before the first voter 
for A. 

e) Define the nth voter as a reversal if the nth voter votes for a di↵erent candidate than 
the n � 1st . For example, in the sequence of votes AABAABB, the third, fourth, and sixth 
voters are reversals; the third and sixth are A to B reversals and the fourth is a B to A 
reversal. Let N(t) be the number of reversals up to time t (t in hours). Is {N(t); t > 0} a 
Poisson process? Explain. 

f) Find the expected time (in hours) between reversals. 

g) Find the probability density of the time between reversals. 

h) Find the density of the time from one A to B reversal to the next A to B reversal. 

Exercise 2.23. Let {N1(t); t > 0} be a Poisson counting process of rate �. Assume that 
the arrivals from this process are switched on and o↵ by arrivals from a second independent 
Poisson process {N2(t); t > 0} of rate �. 

rate � �A �A �A �A �A �A �A �A N1(t) 

rate � �A � �A � A� N2(t)

� On -

A
� On -

A
� On -


�A �A �A A� NA(t) 

Let {NA(t); t�0} be the switched process; that is NA(t) includes the arrivals from {N1(t); t > 
0} during periods when N2(t) is even and excludes the arrivals from {N1(t); t > 0} while 
N2(t) is odd. 

a) Find the PMF for the number of arrivals of the first process, {N1(t); t > 0}, during the 
nth period when the switch is on. 

b) Given that the first arrival for the second process occurs at epoch ⌧ , find the conditional 
PMF for the number of arrivals of the first process up to ⌧ . 

c) Given that the number of arrivals of the first process, up to the first arrival for the second 
process, is n, find the density for the epoch of the first arrival from the second process. 
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d) Find the density of the interarrival time for {NA(t); t � 0}. Note: This part is quite 
messy and is done most easily via Laplace transforms. 

Exercise 2.24. Let us model the chess tournament between Fisher and Spassky as a 
stochastic process. Let Xi, for i � 1, be the duration of the ith game and assume that 
{Xi; i�1} is a set of IID exponentially distributed rv’s each with density fX (x) = �e��x . 
Suppose that each game (independently of all other games, and independently of the length 
of the games) is won by Fisher with probability p, by Spassky with probability q, and is a 
draw with probability 1 � p � q. The first player to win n games is defined to be the winner, 
but we consider the match up to the point of winning as being embedded in an unending 
sequence of games. 

a) Find the distribution of time, from the beginning of the match, until the completion of 
the first game that is won (i.e., that is not a draw). Characterize the process of the number 
{N(t); t > 0} of games won up to and including time t. Characterize the process of the 
number {NF (t); t � 0} of games won by Fisher and the number {NS(t); t � 0} won by 
Spassky. 

b) For the remainder of the problem, assume that the probability of a draw is zero; i.e., 
that p + q = 1. How many of the first 2n � 1 games must be won by Fisher in order to win 
the match? 

c) What is the probability that Fisher wins the match? Your answer should not involve 
any integrals. Hint: consider the unending sequence of games and use part b). 

d) Let T be the epoch at which the match is completed (i.e., either Fisher or Spassky wins). 
Find the distribution function of T . 

e) Find the probability that Fisher wins and that T lies in the interval (t, t+�) for arbitrarily 
small �. 

Exercise 2.25. a) Find the conditional density of Si+1, conditional on N(t) = n and 
Si = si. 

b) Use part a) to find the joint density of S1, . . . , Sn conditional on N(t) = n. Verify that 
your answer agrees with (2.37). 

Exercise 2.26. A two-dimensional Poisson process is a process of randomly occurring spe
cial points in the plane such that (i) for any region of area A the number of special points in 
that region has a Poisson distribution with mean �A, and (ii) the number of special points 
in nonoverlapping regions is independent. For such a process consider an arbitrary location 
in the plane and let X denote its distance from its nearest special point (where distance is 
measured in the usual Euclidean manner). Show that 

a) Pr{X > t} = exp(��⇡t2) 

b) E [X] = 1/(2
p

�). 
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Exercise 2.27. This problem is intended to show that one can analyze the long term 
behavior of queueing problems by using just notions of means and variances, but that such 
analysis is awkward, justifying understanding the strong law of large numbers. Consider an 
M/G/1 queue. The arrival process is Poisson with � = 1. The expected service time, E [Y ], 
is 1/2 and the variance of the service time is given to be 1. 

a) Consider Sn, the time of the nth arrival, for n = 1012 . With high probability, Sn will lie 
within 3 standard derivations of its mean. Find and compare this mean and the 3� range. 

b) Let Vn be the total amount of time during which the server is busy with these n arrivals 
(i.e., the sum of 1012 service times). Find the mean and 3� range of Vn. 

c) Find the mean and 3� range of In, the total amount of time the server is idle up until 
Sn (take In as Sn � Vn, thus ignoring any service time after Sn). 

d) An idle period starts when the server completes a service and there are no waiting 
arrivals; it ends on the next arrival. Find the mean and variance of an idle period. Are 
successive idle periods IID? 

e) Combine (c) and (d) to estimate the total number of idle periods up to time Sn. Use 
this to estimate the total number of busy periods. 

f) Combine (e) and (b) to estimate the expected length of a busy period. 

Exercise 2.28. The purpose of this problem is to illustrate that for an arrival process with 
independent but not identically distributed interarrival intervals, X1,X2, . . . ,, the number 
of arrivals N(t) in the interval (0, t] can be a defective rv. In other words, the ‘counting 
process’ is not a stochastic process according to our definitions. This illustrates that it is 
necessary to prove that the counting rv’s for a renewal process are actually rv’s. 

a) Let the distribution function of the ith interarrival interval for an arrival process be 
FXi (xi) = 1 � exp(�↵ixi) for some fixed ↵ 2 (0, 1). Let Sn = X1 + Xn and show that · · · 

E [Sn] = 
1 � ↵n�1 

.
1 � ↵ 

b) Sketch a ‘reasonable’ sample path for N(t). 

c) Find �S
2 

n 
. 

d) Use the Chebyshev inequality on Pr{Sn � t} to find an upper bound on Pr{N(t)  n}
that is smaller than 1 for all n and for large enough t. Use this to show that N(t) is defective 
for large enough t. 
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