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Lecture 17: Countable-state Markov chains

Outline:

Strong law proofs

Positive-recurrence and null-recurrence

Steady-state for positive-recurrent chains
Birth-death Markov chains

Reversibility

Let {Y}; i > 1} be the IID service times for a (G/G/x)
queue and let {N(¢);t > 0} be the renewal process
with interarrivals {X;; i > 1}. Consider the following

plausability argument for lim;_, 1 ZZN:(%“} Y;(w).
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This assumes X < o0, Y < oo.



To do this carefully, work from bottom up.

Let A; = {w: iMoo N(t,w)/t =1/X}. By the strong
law for renewal processes Pr{A;} = 1.

Let Ay = {w @ liMpooor 3P, Y(w) = Y}. By the
SLLN, PI’{AQ} = 1. Thus (3) = (4) for w € A1A2
and PI’{AlAQ} = 1.

Assume w € Ay, and ¢ > 0. Then dm(e,w) such that
|%ZZT-L:1 Y;(w) = Y] < e for all n > m(e,w). If w € Ay
also, then limy_ o N(t,w) = oo, so Jt(e,w) such that
N(t,w) > m(e,w) for all t > t(e,w).

Y|<e for all t > t(e,w)

N(t,w)
Since ¢ is arbitrary, (2) = (3) = (4) for w € A{A5.
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Finally, can we interchange the limit of a product of
two functions (say f(t)g(t)) with the product of the
limits? If the two functions each have finite limits
(as the functions of interest do for w € A;A5), the
answer is yes, establishing (1) = (4).

To see this, assume |lim; f(t) = a and lim;g(t) = b.
Then

f@®)gt)—ab = (f(t)—a)(g(t)—b) + alg(t)—b) + b(f(t)—a)
|F®)g(t)—ab] < [f(t)—allg(t)—b| + |allg(t)—b| + [b]| f () —al

For any ¢ > 0, choose t(¢) such that |f(t) —a| <€ for
t >t(e) and |g(t) —b| < e for t > t(e). Then

F()g()—ab| < 2 +cla] +elb|  for ¢ > t(e).
Thus lim; f(£)g(t) = limg £(¢) limy g(¢).



Review - Countable-state chains

Two states are in the same class if they communi-
cate (same as for finite-state chains).

Thm: AIll states in the same class are recurrent or
all are transient.

Pf: Assume j is recurrent; then ZnPJT} = oo. For
any i such that j — i, P >0 for some m and Pfi for
some /. Then (recalling lim;E[N;(t)] =X, P}
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By the same kind of argument, if i — j are recurrent,
then Y50, Pl = oo (s0 also lim; E [N} = o).

If a state j is recurrent, then the recurrence time
T;; might or might not have a finite expectation.

Def: If E [Tjj] < o0, j is positive-recurrent. If T;; is a

rv and E[Tjj} = oo, then j is null-recurrent. Other-
wise j is transient.

For p = 1/2, each state in each of the following is
null recurrent.
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Positive-recurrence and null-recurrence

Suppose i «— j are recurrent. Consider the renewal
process of returns to j; with Xy = j. Consider re-
wards R(t) = 1 whenever X(t) = i. By the renewal-
reward thm (4.4.1),

1 st

lim = / R(r)dr = - WP1,
where E[R,] is the expected number of visits to i
within a recurrence of j. The left side is lim;_ %le-(t),
which is 1/T;;. Thus
1 _ E[Rd]

T T'j;

Since there must be a path from j; to i, E[R,] > O.

Thm: For i < j recurrent, either both are positive-
recurrent or both null-recurrent.

Steady-state for positive-recurrent chains

We define steady-state probabilities for countable-
state Markov chains in the same way as for finite-
state chains, namely,

Def: {m;;¢ > 0} is a steady-state distribution if

71']‘20; W]:Z’]T’LPU for all ; >0 and Zﬂ'j:].
{ J
Def: An irreducible Markov chain is a Markov chain
in which all pairs of states communicate.

For finite-state chains, irreducible means recurrent.
Here it can be positive-recurrent, null-recurrent, or
transient.



If steady-state n exists and if Pr{Xg=1i} = m; for
each i, then px, (j) = X5; mP;; = m;. Iterating, px, (j) =
7j, SO steady-state is preserved. Let N;(t) be num-
ber of visits to j in (0,t] starting in steady state.
Then

n
E[N;(0)] = > Pr{Xy=j}=nm
k=1
Awkward thing about renewals and Markov: ]Vj(t)
works for some things and N;;(t) works for others.
Here is a useful hack:
N;;(t) is 1 for first visit to j (if any) plus N;;(t) — 1
for subsequent recurrences j to 3. Thus

E[N;()] < 1+E[N;®)
E [fv’j(t)} = ) mE [N@-j(t)} <1+E [ij(t)}

Major theorem: For an irreducible Markov chain,
the steady-state equations have a solution if and
only if the states are positive-recurrent. If a solution
exists, then =; = 1/T;; > 0 for all i.

Pf: (only if; assume = exists, show positive-recur.)
For each ; and ¢,

_EINO®] 1 B[N
R
< lim E[ij(t)} = _1
t—00 t T

Since }_; m; =1, some 7; > 0. Thus lim;_.E [ij(t)} Jt >
O for that j, so j is positive-recurrent. Thus all
states are positive-recurrent. See text to show that
‘<’ above is equality.
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Birth-death Markov chains

Po p1 P2 ___ p3
For any state i and any sample path, the number
of i — ¢+ 1 transitions is within 1 of the number of

i+ 1 — j transitions; in the limit as the length of the
sample path — o,

T Dq

qi+1

TiPi = Ti+19i+1, Ti41 =
Letting p; = p;/q;4+1, this becomes

1
1+52) =6 pj
This agrees with the steady-state equations.

Ty = TQ H Pji  TO =
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This solution is a function only of pg,p1,... and
doesn’t depend on size of self loops.

The expression for mo converges (making the chain
positive recurrent) (essentially) if the p; are asymp-
totically less than 1.

Methodology: We could check renewal results care-
fully to see if finding 7; by up/down counting is jus-
tified. Using the major theorem is easier.

Birth-death chains are particularly useful in queuing
where births are arrivals and deaths departures.
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Reversibility

Pr{ X s - X1 Xn, - Xo} = Pr{Xp s s X1 | Xan}

For any At defined on Xp+1 up and A~ defined on
X,—1 down,

Priat | x,, A~} =pPr{at | X,}
Priat, A~ | Xn} = Pr{at | X, ) Pr{A™ | Xn}.
Pr{A™ | Xp, AT} = Pr{A™ | Xu}.

Pr{Xpn 1| Xn, Xpg1,- - s Xngr ) = Pr{X,_1| Xn}.
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By Bayes,

Pr{Xn | Xn—l} Pr{Xn—l}
Pr{xn,} '

If the forward chain is in steady state, then

Pr{X,—1=17j| Xn =1} = Pym;/m;.

Aside from the homogeniety involved in starting at

time 0, this says that a Markov chain run backwards

is still Markov. If we think of the chain as starting

in steady state at time —oo, these are the equa-

tions of a (homogeneous) Markov chain. Denot-

ing Pr{X,,_1 =j| Xn, =1} as the backward transition

probabilities P]*Z., forward/ backward are related by

Pr{X,_1| Xn} =

Def: A chain is reversible if P;;. = P;; for all 4, j.
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Thm: A birth/death Markov chain is reversible if it
has a steady-state distribution.

/‘{_al;tures
— N

o Arrivals
Departure

15




MIT OpenCourseWare
http://ocw.mit.edu

6.262 Discrete Stochastic Processes
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms

