
Let {Yi; i ≥ 1} be the IID service times for a (G/G/∞) 

queue and let {N(t); t > 0} be the renewal process 

with interarrivals {Xi; i ≥ 1}. Consider the following 
(  plausability argument for lim 1 →∞ 

�N t,ω
t ( ).t i=1 Yi ω
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 � 

 i=1 i  (1) 
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N(t, ω) Y (



ω) 
= lim lim i=1 i (2) 

t→∞ t t→∞ 
� N(t, ω) 

N(t, ω) n 
=1 Y (i i ω) 

= lim lim	 (3) 
t→∞ t n→∞ n 
1 

= Y WP1	 (4)
X 

This assumes X < ∞, Y < ∞. 
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To do this carefully, work from bottom up. 

Let A1 = {ω : limt→∞ N(t, ω)/t = 1/X}. By the strong 
law for renewal processes Pr{A1} = 1. 

Let 1A2 = {ω : lim  
n→∞ 

�n ω) ==1 Yi(  Y . By the n i
SLLN, Pr{A2} = 1. Thus (3) =  

}
(4) for ω ∈ A1A2 

and Pr{A1A2} = 1. 

Assume�  ω ∈ A2, and � > 0. Then ∃m(�, ω) such that 
|1 n                n i=1 Yi(ω) − Y | < � for all n ≥ m(�, ω). If ω ∈ A1 
also, then limt→∞ N(t, ω) = ∞, so ∃t(�, ω) such that 
N(t, ω) ≥ m(�, ω) for all t ≥ t(�, ω). 

���

 

�N(t,ω)

� i=1 Yi(ω)

� − Y 

���
�� < � for all t ≥ t(�, ω)

� N(t, ω) � 

Since � is arbitrary, (2) = (3) = (4) for ω ∈ A1A2. 
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Finally, can we interchange the limit of a product of 
two functions (say f(t)g(t)) with the product of the 
limits? If the two functions each have finite limits 
(as the functions of interest do for ω ∈ A1A2), the 
answer is yes, establishing (1) = (4). 

To see this, assume limt f(t) = a and limt g(t) = b. 
Then 

f(t)g(t)−ab = (f(t)−a)(g(t)−b) + a(g(t)−b) + b(f(t)−a) 

|f(t)g(t)−ab| ≤ |f(t)−a||g(t)−b| + |a||g(t)−b| + |b||f(t)−a| 

For any � > 0, choose t(�) such that |f(t) − a| ≤ � for 
t ≥ t(�) and |g(t) − b| ≤ � for t ≥ t(�). Then 

|f(t)g(t)− | ≤ 2ab � + �|a| + �|b| for t ≥ t(�). 

Thus limt f(t)g(t) = limt f(t) limt g(t). 
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Review - Countable-state chains 

Two states are in the same class if they communi­
cate (same as for finite-state chains). 

Thm: All states in the same class are recurrent or 
all are transient. 

Pf: Assume j is recurrent; then n P
n 
jj = ∞. For 

any   i such that j ↔ i, Pm > 0 for some

�

  m and P �
 for ij ji

some �. Then (recalling limt E [Nii(t)] = 
�

n P
n) ii

 

n

�∞  n 
∞

P  m k  ii P P  � 
ij jjPjk = 

=1 
≥

k=n

�
∞

−m−� 

By the same kind of argument, if 
� �i ↔�j are recurrent,  

then ∞ = ∞ (so also limt E  
=1 P

n Nt = n ij ∞).ij 
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If a state j is recurrent, then the recurrence time 

Tjj might or might not have a finite expectation. 

Def: If E 
�  
Tjj 

�
< ∞, j is positive-recurrent. If 

�
Tjj is a 

 
rv and E Tjj 

�
= ∞, then j is null-recurrent. Other­

wise j is transient. 

For p = 1/2, each state in each of the following is 

null recurrent. 
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Positive-recurrence and null-recurrence 

Suppose i ↔ j are recurrent. Consider the renewal 
process of returns to j with X0 = j. Consider re­
wards R(t) = 1 whenever X(t) = i. By the renewal-
reward thm (4.4.1), 

 1 
lim

� t E [Rn]
 R(τ)dτ = WP1, 

t→∞ t 0 Tjj 

where E [Rn] is the expected number of visits to i 
within a recurrence of 1j. The left side is limt→∞ Nt ji(t),
which is 1/T ii. Thus 

1 E [Rn]
= 

T ii Tjj 

Since there must be a path from j to i, E [Rn] > 0. 

Thm: For i ↔ j recurrent, either both are positive­
recurrent or both null-recurrent. 
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Steady-state for positive-recurrent chains 

We define steady-state probabilities for countable-
state Markov chains in the same way as for finite-
state chains, namely, 

Def: {πi; i ≥ 0} is a steady-state distribution if 
 

πj ≥ 0; πj =
� 

 πiPij for all j ≥ 0 and 
�

πj = 1 
i j 

Def: An irreducible Markov chain is a Markov chain 
in which all pairs of states communicate. 

For finite-state chains, irreducible means recurrent. 
Here it can be positive-recurrent, null-recurrent, or 
transient. 
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Major theorem: For an irreducible Markov chain, 
the steady-state equations have a solution if and 
only if the states are positive-recurrent. If a solution 
exists, then πi = 1/T ii > 0 for all i. 

Pf: (only if; assume πππ exists, show positive-recur.) 
For each j and t, 

Nj(t)
�


E 
�  

E 
�
� 1 Njj(t)

πj = +

t 

≤ 
t  t 

�

E Njj(t) 1 
≤ lim =

t→∞ 

�

t 

�

Tjj 

Since 
�  

j πj = 1, some πj > 0. Thus limt  E (→∞ Njj t) /t > 
0 for that j, so j is positive-recurrent. 

�

Thus 

�

all 
states are positive-recurrent. See text to show that 
‘≤’ above is equality. 
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If steady-state πππ exists and if Pr{X0 = i} = πi for 
each i, then pX (j) = 

�
i πiPij = πj. Iterating, pX (j) = 

1 n
πj, so steady-state is preserved. Let N�j(t) be num­
ber of visits to j in (0, t] starting in steady state. 
Then 

E 
�
N�j(t)

� n

= 
�

Pr{Xk = j} = nπj 
k=1 

Awkward thing about renewals and Markov: Nj(t)
works for some things and Njj(t) works for others. 
Here is a useful hack: 

�

Nij(t) is 1 for first visit to j (if any) plus Nij(t)  1 
for  

−
subsequent recurrences j to j. Thus 

  
E Nij(t) ≤ 1 + E Njj(t)

   
E

�

 Nj(t)

� �

�
�

�
= 

�
πiE


�
Nij(t)

�




�
≤ 1 + E 

�
Njj(t)

i

�
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Birth-death Markov chains 

For any state i and any sample path, the number 
of i → i + 1 transitions is within 1 of the number of 
i +1 → j transitions; in the limit as the length of the 
sample path →∞, 

πipi πipi = πi+1qi+1; πi+1 = qi+1 

Letting ρi = pi/qi+1, this becomes 

i−1 1 
πi = π0 

� 
ρj; π0 = . 

1 + ∞ i−1 
j=0 ρi=1 j=0 j

This agrees with the steady-state

�

 equations.

�
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i�−1 1 
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j=0 1 + 
�∞ �i−1

i=1 j=0 ρj 

This solution is a function only of ρ0, ρ1, . . . and 
doesn’t depend on size of self loops. 

The expression for π0 converges (making the chain 
positive recurrent) (essentially) if the ρi are asymp­
totically less than 1. 

Methodology: We could check renewal results care­
fully to see if finding πi by up/down counting is jus­
tified. Using the major theorem is easier. 

Birth-death chains are particularly useful in queuing 
where births are arrivals and deaths departures. 
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Reversibility 

Pr
�
Xn+k, ...Xn+1|Xn, ...X0 

� 
= Pr

�  
Xn+k, ..., Xn+1 | Xn 

For any + A defined on  X

�

n+1 up and A− defined on 

Xn−1 down, 

Pr
�   

+ A | + Xn, A−
�

= Pr
�
A | Xn 

�

Pr
�    

+A , A− | Xn 
�

= Pr
�

+ A | Xn 
�
Pr

�
A− | Xn 

  
n

�  

�
. 

Pr
�  
A− | +X , A = Pr

�
A− | Xn 

�
. 

Pr
�  
Xn−1 | Xn, Xn+1, . . . , Xn+k 

�
= Pr{Xn−1 | Xn} . 
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By Bayes, 

Pr{Xn | Xn−1} Pr{X
Pr{ nXn 1 | Xn} = −1}

− . 
Pr{Xn}

If the forward chain is in steady state, then 

Pr{Xn−1 = j | Xn = i} = Pjiπj/πi. 

Aside from the homogeniety involved in starting at 
time 0, this says that a Markov chain run backwards 
is still Markov. If we think of the chain as starting 
in steady state at time −∞, these are the equa­
tions of a (homogeneous) Markov chain. Denot­
ing Pr{Xn 1 = j | Xn = i} as the backward transition −
probabilities P ∗ , forward/ backward are related by ji

πiP
∗ =  ij πjPji.

Def: A chain is reversible if Pij
∗ = Pij for all i, j. 
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Thm: A birth/death Markov chain is reversible if it 
has a steady-state distribution. 

� � �
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