
Expectations 

The distribution function of a rv X often contains 
more detail than necessary. The expectation X = 
E [X] is sometimes all that is needed. 

E [X] = 
� 

aipX(ai) for discrete X 

E
�i

 [X] = xfX(x)dx for continuous X 

 E [X] = 
�

Fc (X x) dx for arbitrary nonneg X 
�	  0 � ∞ 

E [ FcX] = FX(x) dx + (x) dx for arbitrary X X. 
−∞ 0 

Almost as important is the standard deviation, 

σX = 
�  

E 
�
(X − X)2

�
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Indicator random variables 

For every event A in a probabiity model, an indicator 
rv IA is defined where IA(ω) = 1 for ω ∈ A and IA(ω) = 
0 otherwise. Note that IA is a binary rv. 

p (0) = 1 − Pr{A} ; p (1) = PrIA IA {A} . 

0 1 

E [IA] = Pr{A} σ = Pr  Pr )I A  (1 A  
A 

�
{ } − { }

Theorems about rv’s can thus be applied to events. 

0 

� 
FI

1 − Pr{ AA} 

� 1 

 
Why is E [X] = Fc (x) dx for arbitrary nonneg X?X  
Look at discrete 

�

case. Then Fc (x) dx = i a pX i X(ai).
� �

a4pX (a4) 

a3pX (a3) 

a2pX (a2) 

a1pX (a1) 

pX (a4) 

pX (a3) 

pX (a2) 

pX (a1) 

a1 

a2 

a3 

a4 

Fc 
X (x) 

✈ 

✈ 

✈ 

 ✈
If X has a density, the same argument applies to 

 
every Riemann sum for 

�
x xfX(s) dx and thus to the 

limit. 

 
It is simpler and more fundamental to take Fc (x) dxX
as the general definition of E [X]. This is also

�

 useful 
in solving problems 
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Multiple random variables 

For discrete rv’s, independence is more intuitive 

when stated in terms of conditional probabilities. 

pXY (x, y) 
pX|Y (x|y) = 

pY (y) 

Then X and Y are independent if pX Y (x|y) = pX(x) |
for all sample points x and y. This essentially works 

for densities, but then Pr{Y = y} = 0 (see notes). 

This is not very useful for distribution functions. 

NitPick: If X1, . . . , Xn are independent, then all sub­

sets of X1, . . . , Xn are independent. (This isn’t al­

ways true for independent events). 

Is a random variable (rv) X specified by its distribu­

tion function FX(x)? 

No, the relationship between rv’s is important. 

FXY (x, y) = Pr
�  
{ω : X(ω) ≤ x} 

�
{ω : Y (ω) ≤ y}

The rv’s X1, . . . , Xn are independent if 

�

�n  
F � (x1, . . . xn) = FX ( rm xm) fo  all x1, . . . , xnX

m=1 

This product form carries over for PMF’s and PDF’s. 
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IID random variables 

The random variables X1, . . . , Xn are independent 
and identically distributed (IID) if for all x1, . . . , xn 

n  
F

X�
(x1, . . . , xn) = 

�
FX(xk) 

k=1 

This product form works for PMF’s and PDF’s also. 

Consider a probability model in which R is the sam­

ple space and X is a rv. 

We can always create an extended model in which 
Rn is the sample space and X1, X2, . . . , Xn are IID 
rv’s. We can further visualize n →∞ where X1, X2, . . . 
is a stochastic process of IID variables. 

7 

We study the sample average, Sn/n = (X1+ · · · +Xn)/n.
The laws of large numbers say that Sn/n ‘essentially 
becomes deterministic’ as n →∞. 

If the extended model corresponds to repeated ex­
periments in the real world, then Sn/n corresponds 
to the arithmetic average in the real world. 

If X is the indicator rv for event A, then the sample 
average is the relative frequency of A. 

Models can have two types of difficulties. In one, 
a sequence of real-world experiments are not suffi­

ciently similar and isolated to correspond to the IID 
extendied model. In the other, the IID extension is 
OK but the basic model is not. 

We learn about these problems here through study 
of the models. 
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Science, symmetry, analogies, earlier models, etc. 
are all used to model real-world situations. 

Trivial example: Roll a white die and a red die. 
There are 36 sample outcomes, (i, j), 1 ≤ i, j ≤ 6, 
taken as equiprobable by symmetry. 

Roll 2 indistinguishable white dice. The white and 
red outcomes (i, j) and (j, i) for i = j are now in­
distinguishable. There are now 21 ‘finest grain’ 
outcomes, but no sane person would use these as 
sample points. 

The appropriate sample space is the ‘white/red’ 
sample space with an ‘off-line’ recognition of what 
is distinguishable. 

Neither the axioms nor experimentation motivate 
this model, i.e., modeling requires judgement and 
common sense. 

�

9 

Comparing models for similar situations and analyz­
ing limited and defective models helps in clarifying 
fuzziness in a situation of interest. 

Ultimately, as in all of science, some experimenta­

tion is needed. 

The outcome of an experiment is a sample point, 
not a probability. 

Experimentation with probability requires multiple 
trials. The outcome is modeled as a sample point 
in an extended version of the original model. 

Experimental tests of an original model come from 
the laws of large numbers in the context of an ex­
tended model. 
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Laws of large numbers in pictures 

Let X1, X2, . . . , Xn be IID rv’s with mean X, variance 
2 σ . Let Sn = X1 +  + Xn. Then 2 = 2 σ nσ .

5 10 15 20 

The center of the distribution varies with n and the 
spread (σS ) varies with n

√
n. 

The sample average is Sn/n, which is a rv of mean 

X and variance 2σ /n. 

The center of the distribution is X and the spread 

decreases with 1/
√

n. 
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Note that Sn − nX is a zero mean rv with variance 
2 Snσ . Thus n√−nX 

is zero mean, unit variance. 
nσ 

1 · · · · · · · · · · · 

0.8 · 
FZn 

(
· 
z) 

· · · · · · · · · · · · · 

0.6 · · · · · · · · n = 4 [
· 

n

· · · · 
Z  = Sn−E S√ n] 

σ n n = 20 
0.4 · · · ·

X 

· · · · · · · · · n = 50 

0.2 · · · · · · · · · · · · · · · 

0 
    2 1 0 1 2

Central limit theorem: 
� �

Sn − nX 
�� 

lim Pr √ ≤ y = 
�   y 1 2x√ exp 

�
−

n→∞ n σ 

�

dx. 
−∞ 2π 2 

The Bernoulli process 

− −

13 

Sn = Y1 + · · · Yn pY (1) = p > 0, pY (0) = 1 − p = q > 0

The n-tuple of k 1’s followed by n − k 0’s has prob­

ability pkqn−k . 

Each n tuple with k ones has this same probability. 

For p < 1/2, pkqn−k is largest at k = 0 and decreasing 

in k to k = n. 

There are 
�
n
k 

in k for k < n/

� 
n-tuples with k 1’s. This is increasing 

2 and then decreasing. Altogether, 

( n−kk) = 
�n

p
�

k
Sn p q

k 
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n 

pS (n k) = k  p  nq −k

k 
To understand how this va

�

ries

�

 with k, consider 

pS (k+1) n n! k!(  n k)! pk+1qn−k−1
= 

−
p (k) (k+1)!(n−k−1)! n! pkqn−k 
Sn

n − k p
= 

k+1 q 

This is strictly decreasing in k. It also satisfies 

 < 1 for k ≥ pn pS ( +1) n k

 1
 for k < pn < k + 1 
pS (n k)  ≈

 > 1
 for k + 1 ≤ pn 

pS (n k+1) n 
= 

− k p 
(1) 

pS (k) k+1 q n

 pn pS (n k+1) 

 < 1 for k 

 ≈ 1
 for  
≥

k < pn < k + 1 
pS (n k)  > 1
 for k + 1 ≤ pn 

pn 

−2 −1 0 1 2 3 

k − �pn� 

n other words, pS (k), for fixed n, is increasing with n
 for k < pn and decreasing for k > pn. 

15 

I

k
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CLT for Bernoulli process 

pS (n k+1) n 
= 

− k p 

pS ( )n k  k+1 q 

We now use this equation for large n where k is rel­
atively close to pn. To simplify the algebra, assume 
pn is integer and look at k = pn + i for relatively 
small i. Then 

pS (pn + i + 1) n n−pn−i p nq − i p
= = 

pS (pn + )n i  pn+i+1 q pn + i + 1 q 

1 − i 
nq= 

1 + i+1


� � � np � � 

pS (pn + i + 1) i i n + 1 

ln = ln 1
pS (n pn + i) 

−
nq 

− ln 1+ 
np


�

Recall that ln(1 + x) ≈ x − 2x /2 + · · · for |x| << 1.
�    
pS (pn + i + 1) n i i + 1 

ln = ln 1  ln 1+ 
pS (  + )   n pn i

� �

−
nq

�

−
�

np

�

i i 1 
= −

nq 
− 

np 
− + 

np 
· · · 

i 1 
= −

npq 
− + 

np 
· · · 

where we have used 1/p + 1/q = 1/pq and the ne­

glected terms are of order 2 2 i /n . 

This says that these log of unit increment terms 

are essentially linear in i. We now have to combine 

these unit incremental terms. 
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�  
pS (pn + i + 1) i  n 1

ln =  +  
pS (  + )   n pn i

�

−
npq

−
np

· · ·

Expressing an increment of j terms as a telescoping 
sum of j unit increments, 

� � 
�

 
p

ln S (pn + j)n j
=

−1 p (pn + i + 1) 
 ln 

p

�
Sn

S (n pn) i=0 pS (n pn + i) 

�

�j−1 i 1 
= 

i=0 
−

npq 
− + 

np 
· · · 

j(j − 1) j − 2 j
= − − +

2npq np 
· · · ≈ 

2npq 
where we have used the fact that 1+2+ · · · + j − 1 = 
j((j − 1)/2. We have also ignored terms linear in j 
since they are of the same order as a unit increment 
in j. 

Finally, 
�
pS (n pn + j)

� 
− 2 j

ln 
pS (n pn) 

≈ 
2npq 

�  
− 2 j

pS (n pn + j) ≈ pS (n pn) exp 
2npq 

�

This applies for j both positive and negative, and 

is a quantized version of a Gaussian distribution, 

with the unknown scaling constant pS (n pn). Choos­

ing this to get a PMF, 
 

1 2 j
pS (  j) ≈ expn pn + √  

�
−

2πnpq 2npq 

� 

,

which is the discrete PMF form of the central limit 

theorem. See Section 1.5.3 for a different approach. 
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