
Review: Convergence and sequences of IID rv’s. 

Def: A sequence Z1, Z2, . . . , of random variables, 

converges in distribution to a random variable Z if 

limn→∞ FZ (z) = FZ(z) at each )n z for which FZ(z  is 

continuous. 

Example: (CLT) If X1, X2, . . . are IID with variance 
2 σ , Sn = 

�n X , and Z  = (S   nX)/σ n, then i=1 i n n
√

−
Z1, Z2, . . . converges in distribution to N (0, 1). 

Example: If X1, X2, . . . , are IID with mean X and 

Sn = 
�n Xi, then {Sn/n; n i=1 ≥ 1} converges in distri­

bution to the deterministic rv X. 
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Def: A sequence Z1, Z2, . . . , of random variables 
converges in probability to a random variable Z if 
limn→∞ Pr{|Zn − Z| > �} = 0 for every � > 0 (alterna­
tively, if for every � > 0, δ > 0, Pr{|Zn − Z| > �} ≤ δ for 
all large enough n.) 

Example: (WLLN)
�

 If X1, X2, . . . , are IID with mean 
X and Sn = n ,  Xi then i=1 {Sn/n; n ≥ 1} converges in 
probability to the deterministic rv X. (see Thms. 
1.5.1 and 1.5.3 of text) 

Def: A sequence Z1, Z2, . . . , of rv’s�  converges   in
mean square to a rv Z if limn→∞ E |Zn − 2Z|

�
= 0. 

Convergence in mean square implies convergence in 
probability implies convergence in distribution. 
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Arrival processes 

Def: An arrival process is a sequence of increasing 
rv’s 0 < S1 < S2 < · · · where Si−1 < Si means that
Si − Si 1 = Xi is a positive rv, i.e., FX (0) = 0. − i

The differences Xi = Si − Si−1 for i ≥ 2 and X1 = S1 
are called interarrival times and the Si are called 
arrival epochs. � 

� 

� N(t) = n for Sn ≤ t < Sn+1 
X1 ✲

X2 

✛ 

✲

X3 

✛ 

✛ ✲

✻N (t) 

t 
0 S1 S2 S3 

For each t > 0, N(t) is the number of arrivals in (0, t]. 
We call {N(t); t > 0} an arrival counting process. 
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� 

0 

� 

� N(t) = n for Sn ≤ t < Sn+1 
X1 ✲

X2 

✛ 

✲

X3 

✛ 

✲✛ 

✻N (t) 

t 
S1 S2 S3 

A sample path or sample function of the process is 
a sequence of sample values, S1 = s1, S2 = s2, . . . . 

Each sample path corresponds to a particular stair 
case function and the process can be viewed as 
the ensemble (with joint probability distributions) 
of such stair case functions. 

The figure shows how the arrival epochs, interarrival 
times, and counting variables are interrelated for a 
generic stair case function. 
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� 

� 

� N(t) = n for Sn ≤ t < Sn+1 
X1 ✲

X2 

✛ 

✲

X3 

✛ 

✛ ✲

✻N (t) 

t 
0 S1 S2 S3 

It can also be seen that any sample path can be 
specified by the sample values of N(t) for all t, by 
Si for all i, or by Xi for all i, so that essentially 
an arrival process can be specified by the counting 
process, the interarrival times, or the arrival epochs. 

The major relation we need to relate the counting 
process {N(t); t > 0} to the arrival process is 

{Sn ≤ t} = {N(t) ≥ n}; for all n ≥ 1, t > 0. 

If Sn = τ for some τ ≤ t, then N(τ) = n and N(t) ≥ n. 
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Poisson processes and exponential rv’s. 

The remarkable simplicity of Poisson processes is 
closely related to the ‘memoryless’ property of the 
exponential rv. 

Def: A rv X is memoryless if X is positive and, for 
all real t > 0 and x > 0, 

Pr{X > t + x} = Pr{X > t} Pr{X > x} . (1) 

Since the interarrival interval for a Poisson process 
is exponential, i.e., Pr{X > x} = exp(−λx) for x > 0. 

exp(−λ(t + x)) = exp(−λt) exp(−λx). 

Thus X is memoryless. 

Thm: A rv X is memoryless if and only if it is ex­
ponential. (see text) 
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Although stochastic processes are usually defined 
by a sequence of rv’s or a family of rv’s indexed by 
the reals, we represent arrival processes by arrival 
epochs, interarrival intervals, or counting variables, 
which ever is convenient at the moment. 

The general class of arrival processes is too compli­
cated to make much further progress. We simplify 
as follows: 

Def: A renewal process is an arrival process for 
which the interarrival intervals X1, X2, . . . are IID. 

Def: A Poisson process is a renewal process for 
which each Xi has an exponential distribution, FX(x) = 
1 − exp(−λx) for x ≥ 0, where λ is a fixed parameter 
called the rate. 
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The reason for the word ‘memoryless’ is more ap­

parent when using conditional probabilities, 

Pr{X > t + x | X > t} = Pr{X > x} 

If people in a checkout line have exponential service, 

and you have waited 15 minute for the person in 

front, what is his or her remaining service time? 

Exponential, same as when service started. The re­

maining service time ‘doesn’t remember’ the elapsed 

time. Has your time waiting been wasted? 

Why do you move to another line if someone takes 

a long time? 
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Thm: For a Poisson process of rate λ, and any given 
t > 0, the interval Z from t to the next arrival after 
 has distribution  t Fc (z) = exp(−λz) for all z > 0. TheZ
rv Z is independent of N(t), and, given N(t) = n, Z 
is independent of S1, . . . , Sn and of {N(τ); 0 < τ < t}. 
(Thm 2.2.1 in text, but not stated very well there). 

Idea of proof: Condition on N(t) = n and Sn = τ, 
i.e., the number n of arrivals in (0, t] and the time, 
τ of the most recent arrival in (0, t]. 

X1 ✲

Z 

✛ 

✲X ✛2 ✲

X3 
Given N(t)=2, S2 = τ. 

Then X3 > t −  and 
✛

τ
 

Z = X3  (t − τ ) 

Fc 

−

 (z) =  exp(| −λz) Z NS

✲✛ 

N(t) = 2 
✻ 

τ t 
0 S1 S2 S3 
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X1 ✲

Z 

✛ 

✲X ✛2 ✲

X3 
Given N(t)=2, S2 = τ, 

X3 > t − τ and 
✛ 

Z = X3 − (t 
c

− τ ) 

F  
Z | (z NS | n, τ)) = exp(−λz) 

✲✛ 

N(t) = 2 
✻ 

τ t 
0 S1 S2 S3 

The conditional distribution of Z does not vary with 

the conditioning values, N(t) = n and Sn = τ, so Z 

is stat. independent of N(t) and SN(t) (see text). 

The rv SN(t) is the time of the last arrival up to 

and including t. A given sample point ω maps into 

N(t)(ω) = n, say, and then into Sn = τ . We find the 

distribution function of SN(t) much later, but don’t 

need it here. 
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This theorem essentially extends the idea of mem­
orylessness to the entire Poisson process. That is, 
starting at any t > 0, the interval Z to the next 
arrival is an exp rv of rate λ. Z is independent of 
everything before t. 

Subsequent interarrival times are independent of Z 
and of the past. Thus the interarrival process start­
ing at t with first interarrival Z, and continuing with 
subsequent interarrivals is a Poisson process. 

The counting process corresponding to this inter-
arrival process is N(t�) − N(t) for t� > t. This is a 
Poisson process shifted to start at time t, i.e., for 
each t�, N(t�) − N(t) has the same distribution as 
N(t� − t). Same for joint distributions. 

This new process is independent of {N(τ ); 0 < τ ≤ t.} 
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Stationary and independent increments 

Def: A counting process {N(t); t > 0} has the stationary 
increment property if N(t�) − N(t) has the same dis­
tribution as N(t� − t) for all t� > t > 0. 

Stationary increments means that the distribution 
of the number of arrivals in the increment (t, t�] is 
a function only of t� − t. The distribution depends 
on the length of the interval, but not the starting 
time. 

Let N�(t, t�) = N(t�)  N(t), i.e., N(t, t�) is the number 
of arrivals in  

−
the increment (t, t�]. Thus stationary 

increments means that N�(t, t�) 

�

has the same distri­
bution as N(t� − t). 

Poisson processes have the stationary increment 
property. 
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Def: A counting process {N(t); t > 0} has the independent 

increment property if, for every t1, t2, . . . , tn, the rv’s 

N(t1), N�(t1, t2), . . . N�(tn−1, tn) are independent. 

This implies that the number of arrivals in each of 

a set of non-overlapping intervals are independent 

rv’s. 

For a Poisson process, we have seen that N(ti−1, ti) 

is independent of {N(τ); τ ≤ ti−1}, so Poisson pro­

cesses have independent increments. 

�

Thm: Poisson processes have stationary and inde­

pendent increments. 
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The Erlang and Poisson distributions 

For a Poisson process of rate λ, the PDF of arrival 

epoch S2 can be found by convolving the density of 

X1 and X2. Thus 

fS (t) = 
� t 

[λ exp(−λx)][λ exp(−λ(t − x))]dx 
2 0 

= 2λ t exp(−λt) 

Using iteration and convolving fS (t) with λ exp(
n−1

−λt) 

for each n, 

λntn−1 exp( λt)
fS (t) = n

−
(n − 1)! 

This is called the Erlang density. 
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Stopping to smell the roses while doing all this com­
putation will be very helpful. 

The joint density of X1, . . . , Xn is 

 f n
X� n(x1, . . . , xn) = λ exp(−λx1 − λx2 − · · · − λxn) 

n 
= n λ exp(−λsn) where sn = 

�
x  i=1 i

f�n(s1, . . . , sn) = n λ exp(−λsn)S

This says that the joint density is uniform over the 
region where s1 < s2 < · · · < sn. Given that the nth
arrival is at sn, the other n − 1 arrivals are uniformly 
distributed in (0, sn), subject to the ordering. 

Integrating (or looking ahead), we get the Erlang 
marginal density. 
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Thm: For a Poisson process of rate λ, the PMF for 

N(t) is the Poisson PMF, 

(λt)n exp(−λt) 
pN(t)(n) = 

n! 
 

Pf: We will calculate Pr
�
t < Sn+1 ≤ t + δ in two 

ways and go to the limit δ → 0. First we

�

 use the

density for Sn+1 to get 

Pr
�  
t < Sn+1 ≤ t + δ

�
= fS (t)(δ + o(δ)) 

n+1

o(where lim δ)
δ 0 = 0. Next we use the independent → δ

increment property over (0, t] and (t, t + δ]. 

Pr
�  
t < Sn+1 ≤ t + δ

�
= p ( )(n)(λδ + o(δ)) + o(N t δ) 

Equating and going to the limit, p ( )( )N t n = fS (t)/λ. 
n+1
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(  λt)n exp( λt)
p (N(t) n) = 

−
; Poisson PMF 

n! 
Note that the Poisson PMF is a function of λt and 
not of λ or t separately. This is the probability of n 
arrivals in an interval of size t with rate λ. 

If we measure length in a different system of units, 
λ will change accordingly, so the Poisson PMF has 
to be a function of λt only. 

Note also that N(t) = N(t1)+ N(t1, t) for any 0 < t1 < 
t. Thus N(t) is the sum of 2 independent rv’s, one 
with the Poisson distribution

�

 for t1 and the other 
for t − t1. 

This extends to any k disjoint intervals, which is one 
reason the Poisson counting process is so easy to 
work with. 
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Alternate definitions of Poisson process 

Is it true that any arrival process for which N(t) has 
the Poisson PMF for a given λ and for all t is a 
Poisson process of rate λ? 

As usual, the marginal PMF’s alone are not enough. 
The joint distributions must also be those of the 
Poisson process (see text). 

Thm: If an arrival process has the stationary and 
independent increment properties and if N(t) has 
the Poisson PMF for given λ and all t > 0, then the 
process is Poisson. 

VHW Pf: The stationary and independent incre­
ment properties show that the joint distribution of 
arrivals over any given set of disjoint intervals is that 
of a Poisson process. Clearly this is enough. 
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Is it true that any arrival process with the stationary 
and independent increment properties is a Poisson 
process? 

These properties capture much of our intuition about 
Poisson processes, but they allow bulk processes to 
sneak through, i.e., processes in which simultane­
ous arrivals are possible. Poisson processes satisfy 
the following condition for very small increments: 


� �  1 − λδ + o(δ) for n = 0 

Pr N�(t, t+δ) = n =
 λδ for n = 1 
 o(δ) for n ≥ 2 

Thm: If an arrival process has the stationary and 
independent increment properties and satisfies the 
above incremental condition, then it is a Poisson 
process. 
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Relation to Bernoulli process 

Bernoulli processes are often viewed as the discrete 
time version of Poisson processes. There is a con­
fusing feature here that must be cleared up first 

The binary rv’s Y1, Y2, . . . of the Bernoulli process 
have no direct analogs in the Poisson process. 

When we view a Bernoulli process as an arrival pro­
cess, an arrival occurs at discrete time n if and only 
if Yn = 1. Thus Sn = Y1 + · · · + Yn is the num­
ber of arrivals up to and including time n. Thus 
{Sn; n ≥ 1} is analogous to the Poisson counting 
process {N(t); t > 0}. 

21 

The interarrival intervals, X1, X2, . . . for a Bernoulli 
arrival process are the intervals between successive 
1’s in the binary stream. Thus X1 = k if Yi = 0 for 
1 ≤ i ≤ k − 1 and Yk = 1. Thus pX (k) = p(1 

1
− p)k−1 

for all k ≥ 1. Subsequent interarrival intervals are 
IID with X1. 

Thus, the interarrival intervals for the Bernoulli count­
ing process are geometrically distributed. 

The Bernoulli counting process is defined only at 
integer times, but if we consider the arrivals within 
integer intervals, we see that the stationary and 
independent increment properties are satisfied (over 
those integer values). 
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We can clearly extend the definition of a Bernoulli 

counting process to a shrunken Bernoulli counting 

process where changes occur at intervals of δ rather 

than unit intervals. 

Consider a sequence of shrinking Bernoulli processes, 

holding λ/δ constant but shrinking λ and δ. The 

geometric interarrival interval becomes exponential 

and the Bernoulli counting process converges to the 

Poisson counting process. (see text). 
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