
6.262: Discrete Stochastic Processes 3/2/11

Lecture 9: Markov rewards and dynamic prog.

Outline:

• Review plus of eigenvalues and eigenvectors

• Rewards for Markov chains

• Expected first-passage-times

• Aggregate rewards with a final reward

• Dynamic programming

• Dynamic programming algorithm

1

The determinant of an M by M matrix is given by

detA =
∑ M

µ
± A

i

∏
i,µ(i) (1)

=1

where the sum is over all permutations µ of the
integers 1, . . . ,M. If [A] is bT t y t, with

]
[] =



 [A


T
A

[A]T R

[0]
]

[



det
A]R

 [A] = det[A det[T A]R

The reason for this is that for the product in (1) to
be nonzero, µ(i) > t whenever i > t, and thus µ(i) ≤ t
when i ≤ t. Thus the permutations can be factored
into those over 1 to t and those over t+1 to M.

det[P − λI] = det[P − λIt] det[P − λIr]T R

2

det[P − λI] = det[P − λIt] det[P − λIr]T R

The eigenvalues of [P] are the t eigenvalues of [P]T
and the r eigenvalues of [P].R

If "π is a left eigenvector of [P], then (0R , . . . ,0, π1, . . . , πr)
is a left eigenvector of [P], i.e.,



 [P]


T [P]T R

[0]

("0 | "π)
= λ ("0 "π)

[P]



R

 |

The left eigenvectors of [P] are more complicatedT
but not very interesting.

3

Next, assume

[P] =




[P]T



[P]T R [PT R′]

[0] [P]R [0]

[0] [0]





[PR′]



In the same way as before,



det[P − λI] = det[PT − λIt] det[P]R − λIr det[PR′ − λIr]′

The eigenvalues of [P] are comprised of the t from

[P], the r from [P], and theT R r′ from [P].R′

If "π is a left eigenvector of [P], then ("0R ,"π,"0) is a

left eigenvector of [P]. If "π is a left eigenvector of

[P], then ("0R′ ,"0,"π) is a left eigenvector of [P].

4

Rewards for Markov chains

Suppose that each state i of a Markov chain is as-
sociated with a given reward, ri.

Letting the rv Xn be the state at time n, the (ran-
dom) reward at time n is the rv R(Xn) that maps
Xn = i into ri for each i.

We will be interested only in expected rewards, so
that, for example, the expected reward at time n,
given that X0 = i is E [R(Xn)|X0 = i] = j rjP

n.ij

The expected aggregate reward over

∑

the n steps
from m to m + n− 1, conditional on Xm = i is then

vi(n) = E
[
R(Xm) + · · ·+ R(Xm+n−1)|Xm = i

= ri +

]

∑
Pijrj +

j

· · ·+
∑ nP −1rij j
j

5

nvi(n) = ri +
∑

Pijrj +
j

· · ·+
∑

P −1rij j
j

If the Markov chain is an ergodic unichain, then

successive terms of this expression tend to a steady

state gain per step,

g =
∑

πjrj,
j

which is independent of the starting state. Thus

vi(n) can be viewed as a transient in i plus ng.

The transient is important, and is particularly im-

portant if g = 0.

6

Expected first-passage-time

Suppose, for some arbitrary unichain, that we want
to find the expected number of steps, starting from
a given state i until some given recurrent state, say
1, is first entered. Assume i = 1.

This can be viewed as a reward problem by assigning
one unit of reward to each successive state until
state 1 is entered.

Modify the Markov chain by changing the transition
probabilities from state 1 to P11 = 1. We set r1 = 0,
so the reward stops when state 1 is entered.

For each sample path starting from state i = 1, the
probability of the initial segment until 1 is entered
is unchanged, so the expected first-passage-time is
unchanged.

$

$

7

The modified Markov chain is now an ergodic unichain
with a single recurrent state, i.e., state 1 is a trap-
ping state.

Let ri = 1 for i = 1 and let r1 = 0.

Thus if state 1 is first entered at time $, then the
aggregate reward, from 0 to n, is $ for all n ≥ $.

The expected first passage time, starting in state
i, is vi = limn→∞ vi(n).

There is a sneaky way to calculate this for all i.

For each i = 1, assume that X0 = i. There is then
a unit reward at time 0. In addition, given that
X1 = j, the remaining expected reward is vj. Thus
vi = 1 + j Pijvj for i = 1, with v1 = 0.

$

$

∑ $

8

The expected first-passage-time to state 1 from
state i = 1 is then

vi = 1 +
∑

Pijvj with v1 = 0
j

This can be expressed in vector form as

"v = "r + [P]"v where "r = (0,1,1, . . . ,1),

and v1 = 0 and P11 = 1.

Note that if "v satisfies "v = "r + [P]"v, then "v + α"e also
satisfies it, so that v1 = 0 is necessary to resolve the
ambiguity.

Also, since [P] has 1 as a simple eigenvalue, this
equation has a unique solution with v1 = 0.

$

9

Aggregate rewards with a final reward

There are many situations in which we are inter-
ested in the aggregate reward over n steps, say time
m to m + n− 1, followed by a special final reward uj
for Xm+n = j.

The flexibility of assigning such a final reward will
be particularly valuable in dynamic programming.

The aggregate expected reward, including this final
reward, is then

vi(n, "u) = ri +
∑ n 1 nPijrj + · · ·+

∑
P − rj +

∑
Pijuij j

j j j

In vector form,

"v(n, "u) = "r + [P] nr + 1" · · ·+ [nP −]"r + [P]"u

10

Dynamic programming

Consider a discrete-time situation with a finite set
of states, 1,2, . . . ,M, where at each time $, a deci-
sion maker can observe the state, say X$ = j and
choose one of a finite set of alternatives. Each al-

(k)ternative k consists of a current reward r and aj
(k)set of of transition probabilities {P ; 1 j ≤ ≤M} for

going to the next state.

0.99 0.01 0.99 0.99 0.01
1 2 1 2

0.01r (1) 1
1=0 r2 =1 r1=0 (2)r2 =50

Decision 1 Decision 2

!"#$! !%
!" ! !%! !" !#$

For this example, decision 2 seeks instant gratifica-
tion, whereas decision 1 seeks long term gratifica-
tion.

11

Assume that this process of random transitions com-

bined with decisions based on the current state

starts at time m in some given state and contin-

ues until time m + n− 1.

After the nth decision, made at time m+n−1, there

is a final transition based on that decision.

At time m + n, there is a final reward, (u1, . . . , uM)
based on the final state.

12

The objective of dynamic programming is both to
determine the optimal decision at each time and
to determine the expected reward for each starting
state and for each number n of steps.

As one might suspect, it is best to start with a single
step (n = 1) and then proceed to successively more
steps.

Surprisingly, this is best thought of as starting at
the end and working back to the beginning.

The algorithm to follow is due to Richard Bellman.
Its simplicity is a good example of looking at an
important problem at the right time. Given the
formulation, anyone could develop the algorithm.

13

The dynamic programming algorithm

As suggested, we first consider the optimal expected
aggregate reward over a single time period.

That is, starting at an arbitrary time m in a given
state i, we make a decision, say decision k at time
m.

(k)This provides a reward r at time m. Then thei
selected transition probabilities, Pk lead to a finalij

expected reward j ujP
k at time m + 1.ij

The decision k is

∑

chosen to maximize the corre-
sponding aggregate reward, i.e.,

vi
∗(1) = max kr

k



i(k) +
∑

ujPij
j



 

14

Next consider vi
∗(2, "u), i.e., the maximal expected

aggregate reward starting at Xm = i with decisions
made at times m and m + 1 and a final reward at
time m + 2.

The key to dynamic programming is that an optimal
decision at time m + 1 can be selected based only
on the state j at time m + 1.

This decision (given Xm+1 = j) is optimal indepen-
dent of the decision at time m.

That is, whatever decision is made at time m, the
maximal expected reward at times m+1 and m+2,

(k) (k)given Xm+1 = j, is maxk

(
r +j

∑
$ P u . This isj$ $

v∗(1, "u), as just found.

)

j

15

We have just seen that

vj
∗)(1, "u) = max



 (k)r +j

∑ (kP uj$ $
k $



is the maximum expected aggregate rew



ard over

times m + 1 and m + 2, conditional Xm+1 = j.

Thus the maximum expected aggregate reward over

m, m + 1, m + 2, conditional on Xm = i, is

vi
∗ () ()(2) k, "u = max

k

(
r +i

∑ kP v
j ij j

∗(1, "u)
)

16

This same procedure can be used to find the opti-

mal policy and optimal expected reward for n = 3,

vi
∗(3, "u) = max

k

(
(k)r +i

This solution shows how to cho

∑ (k)P vj(2, "u)
j ij

∗
)

ose the optimal de-

cision at time m and finds the optimal aggregate

expected reward, but is based on first finding the

optimal solution for n = 2. In general,

vi
∗ ((n, "u) = max

(
k) (k)r +ik

∑
P v

j ij j
∗(n−1, "u)

)

For any given n, then, the algorithm calculates vj
∗(m, "u)

for all states j and all m ≤ n, starting at m = 1.

This is the dynamic programming algorithm.

17

MIT OpenCourseWare
http://ocw.mit.edu

6.262 Discrete Stochastic Processes
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

