Lecture 7

Burke's Theorem and Networks of Queues

Eytan Modiano Massachusetts Institute of Technology

- An interesting property of an M/M/1 queue, which greatly simplifies combining these queues into a network, is the surprising fact that the output of an M/M/1 queue with arrival rate λ is a Poisson process of rate λ
 - This is part of Burke's theorem, which follows from reversibility
- A Markov chain has the property that
 - P[future | present, past] = P[future | present]

Conditional on the present state, future states and past states are independent

P[past | present, future] = P[past | present]

• The state sequence, run backward in time, in steady state, is a Markov chain again and it can be easily shown that

$$p_i P_{ij}^* = p_j P_{ji}$$
 (e.g., M/M/1 $(p_n) \lambda = (p_{n+1}) \mu$)

- A Markov chain is <u>reversible</u> if P*ij = Pij
 - Forward transition probabilities are the same as the backward probabilities
 - If reversible, a sequence of states run backwards in time is statistically indistinguishable from a sequence run forward
- A chain is reversible iff p_iP_{ij}=p_jP_{ji}
- All birth/death processes are reversible
 - Detailed balance equations must be satisfied

Implications of Burke's Theorem

- Since the arrivals in forward time form a Poisson process, the departures in backward time form a Poisson process
- Since the backward process is statistically the same as the forward process, the (forward) departure process is Poisson
- By the same type of argument, the state (packets in system) left by a (forward) departure is independent of the past departures
 - In backward process the state is independent of future arrivals

NETWORKS OF QUEUES

- The output process from an M/M/1 queue is a Poisson process of the same rate λ as the input
- Is the second queue M/M/1?

Independence Approximation (Kleinrock)

- Assume that service times are independent from queue to queue
 - Not a realistic assumption: the service time of a packet is determined by its length, which doesn't change from queue to queue

- X_p = arrival rate of packets along path p
- Let λ_{ij} = arrival rate of packets to link (i,j)

$$\lambda_{ij} = \sum_{\text{P traverses link (i, j)}} X_p$$

• μ_{ii} = service rate on link (i,j)

• Assume all queues behave as independent M/M/1 queues

$$N_{ij} = \frac{\lambda_{ij}}{\mu_{ij} - \lambda_{ij}}$$

• N = Ave. packets in network, T = Ave. packet delay in network

$$N = \sum_{i,j} N_{ij} = \frac{\lambda_{ij}}{\mu_{ij} - \lambda_{ij}}, \qquad T = \frac{N}{\lambda}$$

$$\lambda = \sum_{all \ paths \ p} X_p = \text{ total external arrival rate}$$

- Approximation is not always good, but is useful when accuracy of prediction is not critical
 - Relative performance but not actual performance matters
 - E.g., topology design

Slow truck effect

- Example of bunching from slow truck effect
 - long packets require long service at each node
 - Shorter packets catch up with the long packets
- Similar to phenomenon that we experience on the roads
 - Slow car is followed by many faster cars because they catch up with it

Jackson Networks

- Independent external Poisson arrivals
- Independent Exponential service times
 - Same job has independent service time at different queues
- Independent routing of packets
 - When a packet leaves node i it goes to node j with probability P_{ii}
 - Packet leaves system with probability $1 = \sum_{i} P_{ii}$
 - Packets can loop inside network
- Arrival rate at node i,

- Set of equations can be solve to obtain unique λ_i 's
- Service rate at node i = μ_i

Jackson Network (continued)

- Customers are processed fast $(\mu >> \lambda)=$
- Customers exit with probability (1-P)
 - Customers return to queue with probability P
 - λ**== r + Pλ==>** λ**== r/(1-P)**
- When P is large, each external arrival is followed by a burst of internal arrivals
 - Arrivals to queues are not Poisson

Jackson's Theorem

- We define the state of the system to be $\stackrel{\mathsf{V}}{n} = (n_1, n_2 \sqcup n_k)$ where n_i is the number of customers at node i
- Jackson's theorem:

$$P(n^{\mathsf{V}}) = \prod_{i=1}^{i=k} \mathcal{P}(n_i) = \prod_{i=1}^{i=k} \rho_i^{n_i} (1 - \mathcal{P}_i), \quad \text{where } \rho_i = \frac{\lambda_i}{\mu_i}$$

- That is, in steady state the state of node i (n_i) is independent of the states of all other nodes (at a given time)
 - Independent M/M/1 queues
 - Surprising result given that arrivals to each queue are neither Poisson nor independent
 - Similar to Kleinrock's independence approximation
 - Reversibility

Exogenous outputs are independent and Poisson

The state of the entire system is independent of past exogenous departures

Example

 $\lambda_1 = ?$ $\lambda_2 = ?$

 $P(n_1, n_2) = ?$