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�Burke’s Theorem


•	 An interesting property of an M/M/1 queue, which greatly
simplifies combining these queues into a network, is the
surprising fact that the output of an M/M/1 queue with arrival rate λ 
is a Poisson process of rate λ 

– This is part of Burke's theorem, which follows from reversibility 

• A Markov chain has the property that 
– P[future | present, past] = P[future | present] 

Conditional on the present state, future states and past states are
independent 

P[past | present, future] = P[past | present] 

=> P[Xn=j |Xn+1 =i, Xn+2=i2,...] = P[Xn=j | Xn+1=i] = P*ij 
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Burke’s Theorem (continued)


•	 The state sequence, run backward in time, in steady state, is a
Markov chain again and it can be easily shown that 

piP*ij = pjPji (e.g., M/M/1 (pn)λ=(pn+1)µ) 

• A Markov chain is reversible if P*ij = Pij 
–	 Forward transition probabilities are the same as the backward 

probabilities 
–	 If reversible, a sequence of states run backwards in time is 

statistically indistinguishable from a sequence run forward 

• A chain is reversible iff piPij=pjPji 

• All birth/death processes are reversible 
– Detailed balance equations must be satisfied 
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Implications of Burke’s Theorem


time 

Arrivals 

Departures 

time 

•	 Since the arrivals in forward time form a Poisson process, the
departures in backward time form a Poisson process 

•	 Since the backward process is statistically the same as the forward
process, the (forward) departure process is Poisson 

•	 By the same type of argument, the state (packets in system) left by a
(forward) departure is independent of the past departures 

– In backward process the state is independent of future arrivals 
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NETWORKS OF QUEUES


Exponential Exponential 

M/M/1 M/M/1 
? 

Poisson 

λ λ 

Poisson Poisson 

λ 

•	 The output process from an M/M/1 queue is a Poisson process of
the same rate λ as the input 

• Is the second queue M/M/1? 
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Independence Approximation

(Kleinrock)


• Assume that service times are independent from queue to queue 
–	 Not a realistic assumption: the service time of a packet is determined 

by its length, which doesn't change from queue to queue 

x2 

1 

3 
2 

4 

x1 

Link 3,4 

• Xp = arrival rate of packets along path p 

•	 Let λij = arrival rate of packets to link (i,j) λij = ∑ Xp 
P traverses link (i, j) 

• µij = service rate on link (i,j) 
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Kleinrock approximation


• Assume all queues behave as independent M/M/1 queues 

λijNij = µij − λij 

• N = Ave. packets in network, T = Ave. packet delay in network 

λijN = Nij =
µij − λi, j ij 

N∑ , T = 
λ


λ = XP =  total external arrival rate
∑

all paths p 

•	 Approximation is not always good, but is useful when accuracy of
prediction is not critical 

– Relative performance but not actual performance matters 
– E.g., topology design
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Slow truck effect


Long packet Short packets 

queue queue queue 

• Example of bunching from slow truck effect 
– long packets require long service at each node 
– Shorter packets catch up with the long packets 

• Similar to phenomenon that we experience on the roads 
–	 Slow car is followed by many faster cars because they

catch up with it 
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Jackson Networks


• Independent external Poisson arrivals 
• Independent Exponential service times 

– Same job has independent service time at different queues 
• Independent routing of packets 

– When a packet leaves node i it goes to node j with probability Pij 
– Packet leaves system with probability 1 −=∑ j

Pij 
– Packets can loop inside network 

• Arrival rate at node i, 

λi = ri +=∑k 
λk Pki 

External Internal arrivals from 
arrivals Other nodes 

– Set of equations can be solve to obtain unique λi’s 
– Service rate at node i = µi 
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Jackson Network (continued)


r 
(1−P) λµ >> λ=+ x λ=

λP 

External input 
Internal inputs 

External input 

• Customers are processed fast (µ >> λ)=
• Customers exit with probability (1-P) 

– Customers return to queue with probability P 
– λ== r + Pλ==> λ== r/(1-P) 

•	 When P is large, each external arrival is followed by a burst of
internal arrivals 

– Arrivals to queues are not Poisson 
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Jackson’s Theorem


v 
•	 We define the state of the system to be n = (n1, n2 L nk )

where ni is the number of customers at node i 
• Jackson's theorem: 

i = k i = k 
niP(n 

v
) = ∏=Pi ( ni ) = ∏ ρi (1 −=ρi ), where ρi =

λi 

i 1 i 1 µi 

•	 That is, in steady state the state of node i (ni) is independent of the
states of all other nodes (at a given time) 

– Independent M/M/1 queues 
–	 Surprising result given that arrivals to each queue are neither

Poisson nor independent 
– Similar to Kleinrock’s independence approximation 
–	 Reversibility 

Exogenous outputs are independent and Poisson 
The state of the entire system is independent of past exogenous departures 
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Example


λ1 λ2 
r µ1 µ2 

3/8 

2/83/8 

λ1 = ? 
λ2 = ? 

P(n1,n2) = ? 
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