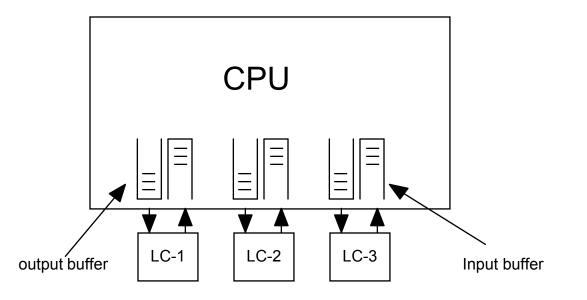
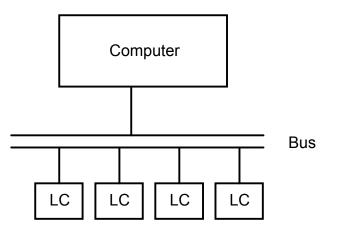

Lectures 17 & 18

Fast packet switching

Eytan Modiano Massachusetts Institute of Technology

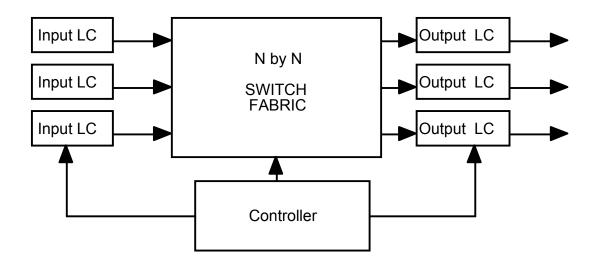

Eytan Modiano Slide 1

Packet switches


- A packet switch consists of a routing engine (table look-up), a switch scheduler, and a switch fabric.
- The routing engine looks-up the packet address in a routing table and determines which output port to send the packet.
 - Packet is tagged with port number
 - The switch uses the tag to send the packet to the proper output port

First Generation Switches

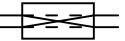
- Computer with multiple line cards
 - CPU polls the line cards
 - CPU processes the packets
- Simple, but performance is limited by processor speeds and bus speeds
- Examples: Ethernet bridges and low end routers


Second Generation switches

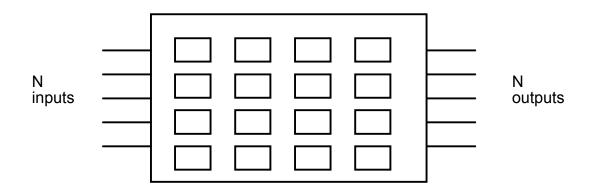
- Most of the processing is now done in the line cards
 - Route table look-up, etc.
 - Line cards buffer the packets
 - Line card send packets to proper output port
- Advantages: CPU and main Memory are no longer the bottleneck
- Disadvantage: Performance limited by bus speeds
 - Bus BW must be N times LC speed (N ports)
- Example: CISCO 7500 series router

Eytan Modiano Slide 4

Third generation switches

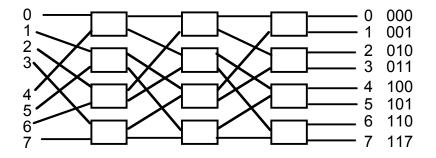


- Replace shared bus with a switch fabric
- Performance depends on the switch fabric, but potentially can alleviate the bus bottleneck


- Distributed buffer
- Output buffer
- Input buffer

• Modular Architecture

Basic module is a 2x2 switch, which can be either in the through or crossed position



• Switch buffers: None, at input, or at output of each module Switch fabric consists of many 2x2 modules

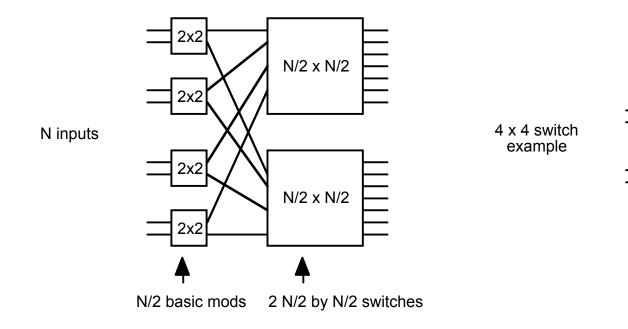
- N input
- Log(N) stages with N/2 modules per stage

Example: Omega (shuffle exchange network)

- Notice the order of inputs into a stage is a shuffle of the outputs from the previous stage: (0,4,1,5,2,6,3,7)
- Easily extended to more stages
- Any output can be reached from any input by proper switch settings
 - Not all routes can be done simultaneously
 - Exactly one route between each SD pair
 - Self-routing network

Self Routing

- Use a tag: n bit sequence with one bit per stage of the network
 - $E.g., Tag = b_3b_2b_1$
- Module at stage i looks at bit i of the tag (b_i), and sends the packet up if b_i=0 and down if b_i=1
- In omega network, for destination port with binary address abc the tag is cba
 - Example: output 100 => tag = 001
 - Notice that regardless of input port, tag 001 will get you to output 100


- Another Example of a multi-stage interconnection network
- Built using the basic 2x2 switch module
- Recursive construction
 - Construct an N by N switch using two N/2 by N/2 switches and a new stage of N/2 basic (2x2) modules
 - N by N switch has $Log_2(N)$ stages each with N/2 basic (2x2) modules

2x2

2x2

2x2

2x2

Contention

- Two packets may want to use the same link at the same time (same output port of a module)
- Hot spot effect
- Solution: Buffering

Throughput analysis of interconnection networks

- Assume no buffering at the switches
- If two packets want to use the same port one of them is dropped
- Suppose switch has m stages
- Packet transmit time = 1 slot (between stages)
- New packet arrival at the inputs, every slot
 - Saturation analysis (for maximum throughput)
 - Uniform destination distribution independent from packet to packet

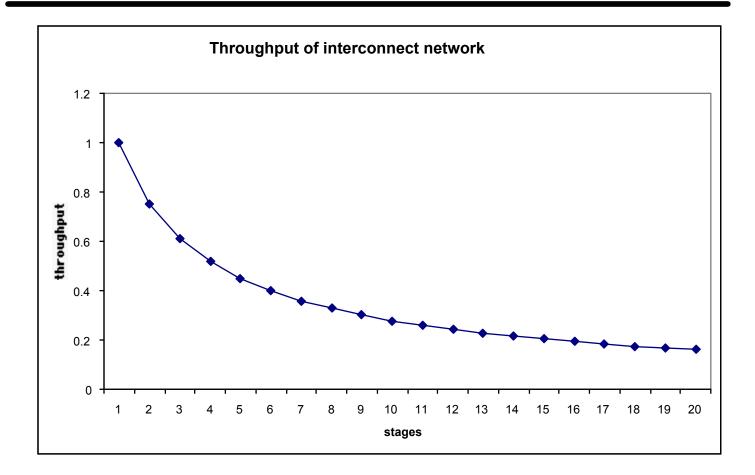
Interconnection Throughput, continued

 Let P(m) be the probability that a packet is transmitted on a stage m link

P(m) A P(m) B

- P(0) = 1
- P(m+1) = 1 P(no packet on stage m+1 link (link c))

= 1 – P(neither inputs to stage m+1 chooses this output)

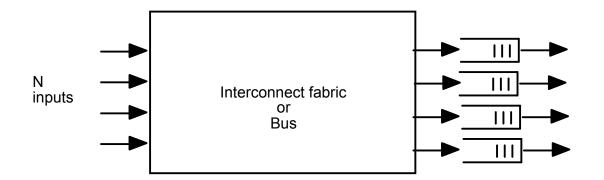

• Each input has a packet with probability P(m) and that packet will choose the link with probability 1/2. Hence,

$$P(m+1) = 1 - (1 - \frac{1}{2}P(m))^{2}$$

- We can now solve for P(m) recursively
- For an m stage network, throughput (per output link) is P(m), which is the probability that there is a packet at the output

Eytan Modiano Slide 13

Interconnection Throughput, continued


- Throughput can be significantly improved by adding buffers at the stages
 - Buffers increase delay
 - Tradeoff between delay and throughput

Eytan Modiano Slide 14

Advantages/Disadvantages of multi-stage architecture

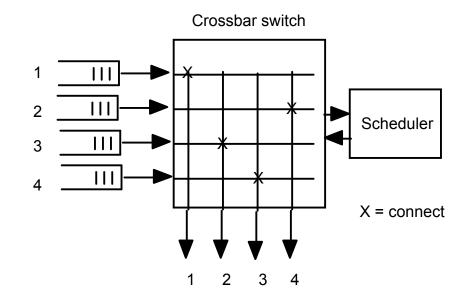
- Advantages
 - Modular
 - Scalable
 - Bus (links) only needs to be as fast as the line cards
- Disadvantages
 - Delays for going through the stages
 Cut-through possible when buffers empty
 - Decreased throughput due to internal blocking
- Alternatives: Buffers that are external to the switch fabric
 - Output buffers
 - Input buffers

Output buffer architecture

- As soon as a packet arrives, it is transferred to the appropriate output buffer
- Assume slotted system (cell switch)
- During each slot the switch fabric transfers one packet from each input (if available) to the appropriate output
 - Must be able to transfer N packets per slot
 - Bus speed must be N times the line rate
 - No queueing at the inputs

Buffer at most one packet at the input for one slot

- If external arrivals to each input are Poisson (average rate \overline{A}), each output queue behaves as an M/D/1 queue
 - packet duration equaling one slot $\overline{X} = \overline{X^2} = 1$
- The average number of packets at each output is given by (M/G/1 formula):


$$N_Q = \frac{2\overline{A} - (\overline{A})^2}{2(1 - \overline{A})}$$

• Note that the only delay is due to the queueing at the outputs and none is due to the switch fabric

Advantages/Disadvantages of Output buffer architecture

- Advantages: No delay or blocking inside switch
- Disadvantages:
 - Bus speed must be N times line speed
 Imposes practical limit on size and capacity of switch
- Shared output buffers: output buffers are implemented in shared memory using a linked list
 - Requires less memory (due to statistical multiplexing)
 - Memory must be fast

- Packets buffered at input rather than output
 - Switch fabric does not need to be as fast

- During each slot, the scheduler established the crossbar connections to transfer packets from the input to the outputs
 - Maximum of one packet from each input
 - Maximum of one packet to each output

Slide 19

Head of line (HOL) blocking – when the packet at the head of two or more input queues is destined to the same output, only one can be transferred and the other is blocked Eytan Modiano

Throughput analysis of input queued switches

- HOL blocking limits throughput because some inputs (consequently outputs) are kept idle during a slot even when they have other packet to send in their queue
- Consider an NxN switch and again assume that inputs are saturated (always have a packet to send)
- Uniform traffic => each packet is destined to each output with equal probability (1/N)
- Now, consider only those packets at the head of their queues (there are N of them!)

Throughput analysis, continued

• Let Q_m^i be the number of HOL packets destined to node i at the end of the mth slot

$$Q_m^i = \max(0, Q_{m-1}^i + A_m^i - 1)$$

• Where

 A_m^i = number of new HOL messages addressed to node i that arrive to the HOL during slot m. Now,

$$P(A_m^i = l) = {\binom{C_{m-1}}{l}} (1/N)^l (1-1/N)^{C_{m-1}-l}$$

- Where
- C_{m-1} = number of HOL messages that departed during the m-1 slot = number of new HOL arrivals
- As N approaches infinity, A_m^i becomes Poisson of rate C/N where C is the average number of departures per slot

Throughput analysis, continued

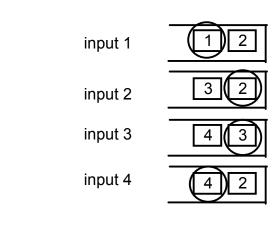
• In steady-state, Q^i behaves as an M/D/1 of rate \overline{A} and, as before,

$$\overline{Q}^{i} = \frac{2\overline{A} - (\overline{A})^{2}}{2(1 - \overline{A})}$$

• Notice however that the total number of packets addressed to the outputs is N (number of HOL packets). Hence,

$$\sum_{i=1}^{N} Q^{i} = N \quad \Longrightarrow \quad \overline{Q^{i}} = \frac{2\overline{A} - (\overline{A})^{2}}{2(1 - \overline{A})} = 1$$

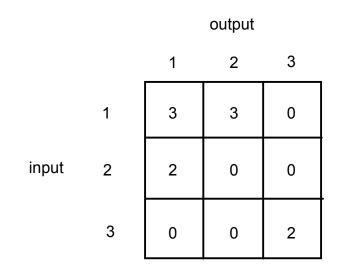
We can now solve, using the quadratic equation to obtain:


$$\overline{A} = utilization = 2 - \sqrt{2} \approx 0.58$$

Summary of input queued switches

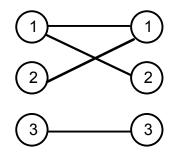
- The maximum throughput of an input queued switch, is limited by HOL blocking to 58% (for large N)
 - Assuming uniform traffic and FCFS service
- Advantages of input queues:
 - Simple
 - Bus rate = line rate
- Disadvantages: Throughput limitation

Overcoming HOL blocking


 If inputs are allowed to transfer packets that are not at the head of their queues, throughput can be substantially improved (not FCFS)

• How does the scheduler decide which input to transfer to which output?

Example:


Backlog matrix

- Each entery in the backlog matrix represent the number of packets in input i's queue that are destined to output j
- During each slot the scheduler can transfer at most one packet from each input to each output
 - The scheduler must choose one packet (at most) from each row, and column of the backlog matrix
 - This can be done by solving a bi-partite graph matching algorithm
 - The bi-partite graph consists of N nodes representing the inputs and N nodes representing the outputs

Bi-partite graph representation

- There is an edge in the graph from an input to an output if there is a packet in the backlog matrix to be transferred from that input to that output
 - For previous backlog matrix, the bi-partite graph is:

- Definition: A matching is a set of edges, such that no two edges share a node
 - Finding a matching in the bi-partite graph is equivalent to finding a set of packets such that no two packets share a row or column in the backlog matrix
- Definition: A maximum matching is a matching with the maximum possible number of edges
 - Finding a maximum matching is equivalent to finding the largest set of packets that can be transferred simultaneously

Maximum Matchings

- Algorithms for finding maximum matching exist
- The best known algorithms takes O(N^{2.5}) operations
 - Too long for large N
- Alternatives
 - Sub-optimal solutions
 - Maximal matching: A matching that cannot be made any larger for a given backlog matrix
 - For previous example:
 - (1-1,3-3) is maximal
 - (2-1,1-2,3-3) is maximum
- Fact: The number of edges in a maximal matching \geq 1/2 the number of edges in a maximum matching

Achieving 100% throughput in an input queued switch

- Finding a maximum matching during each time slot does not eliminate the effects of HOL blocking
 - Must look beyond one slot at a time in making scheduling decisions
- Definition: A weighted bi-partite graph is a bi-partite graph with costs associated with the edges
- Definition: A maximum weighted matching is a matching with the maximum edge weights
- Theorem: A scheduler that chooses during each time slot the maximum weighted matching where the weight of link (i,j) is equal to the length of queue (i,j) achieves full utilization (100% throughput)
 - Proof: see "Achieving 100% throughput in an input queued switch" by N. McKeown, et. al., IEEE Transactions on Communications, Aug. 1999.