MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.301 Solid State Circuits

Fall Term 2010 Problem Set 2 Issued : Sept. 9, 2010, 2010 Due : Friday, Sept. 17, 2010

Problem 1: For the common-emitter amplifier shown below:

- (a) Find the small signal voltage gain v_o/v_i as a function of R_S , R_L , β , V_A , and collector current I_C . Do not ignore r_o in this problem.
- (b) Determine the value of DC collector bias current I_C that maximizes the small signal voltage gain. What is the voltage gain at the optimum I_C ? Explain qualitatively why the gain falls at very high and very low collector currents.

Problem 2: Consider the following transistor circuit.

- (a) With $V_{BE} = 0.7$ V and $\beta = 400$, calculate the transistor operating point (find I_C and V_{CE}).
- (b) Due to a manufacturing mix-up, some of your transistors have $\beta = 100$. Find I_C for the new transistors.
- (c) Find new values for the base-biasing resistors so that I_C only changes by 10% when β falls from 400 to 100.
- (d) Refer again to the circuit in part (a). Due to temperature fluctuations in your operating enviroment, V_{BE} sometimes drops as low as 0.5V. Find I_C under this condition.

(e) How should the transistor be biased so that I_C only changes by 10% if V_{BE} falls from 0.7V to 0.5V?

Problem 3: A EFCB (emitter-follower common-base) connection is illustrated below. Determine the overall small signal voltage gain v_o/v_i , input resistance, and output resistance. You may neglect r_o for this problem.

MIT OpenCourseWare http://ocw.mit.edu

6.301 Solid-State Circuits Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.