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Quantization and Oversampled Noise Shaping 

Reading: Sections 4.8 - 4.9 in Oppenheim, Schafer & Buck (OSB).


While the title of the course is Discrete-Time Signal Processing, practical implementations for 
many of the discussed systems rely on discrete-value data representations as well. This business 
of representing discrte-time signals using finite precision will be the focus of the lecture. 

The topic plays a key role in the problems of analog-to-digital and digital-to-analog conversion. 
So far we’ve explicitly studied C/D and D/C conversion, and within this context we have looked 
at how CT signals are processed by a DT system. In practice, however, a common scheme for 
operating in discrete-time on continuous-time signals consists of a sample-and-hold stage, fol
lowed by digitization of the resulting analog signal. This overall scheme is depicted in OSB 
Figure 4.45, and the effect of the sample-and-hold block is illustrated in OSB Figure 4.46(b). 

Decomposing the system in OSB Figure 4.45 into a more easily analyzable conceptual represen
tation, we arrive at OSB Figure 4.47, which contains the familiar C/D block. Typical behavior 
of the quantizer and coder blocks from the figure are illustrated in OSB Figure 4.48 for 3-bit 
uniform quantization. With a uniform quantization scheme, representing x[n] using B + 1 bits 
means that the signal is quantized to 2B+1 levels, so if x[n] has maximum value XM such that 
−XM � x[n] < +XM , these 2B+1 levels must cover the range ±XM . This implies that the 
spacing � between adjacent quantization levels is therefore 

� = XM 2
−B . 

The question then arises of how to analyze the error introduced by the process of quantization. 
Since a quantizer is generally a highly nonlinear system, we instead choose to use an additive 
noise model in its place, as depicted in OSB Figure 4.50. While the appropriateness of using 
such a model is perhaps best evaluated on a case-by-case basis, we’ll see that this model does 
allow us to conveniently analyze the effects of signal quantization for a number of systems. 

The output of a quantizer x̂[n] is represented in the additive noise model as 

x̂[n] = x[n] + e[n], 

where e[n] is the additive noise source. We’ll now discuss the statistics of e[n]. As a starting

point, we know that e[n] cannot take on values greater than �/2 or less than −�/2. It
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may furthermore seem reasonable that the distribution of e[n] is uniform for many signals 
encountered in practice. The full set of assumptions made by the additive noise model are 
discussed in Section 4.8.3 of OSB. Briefly, they are: 

•	 e[n] is a sample sequence of a stationary random process. 

•	 e[n] is uncorreletaed with x[n]. 

•	 e[n] is a white-noise process. 

•	 The probability distribution of e[n] is uniform over the range −�/2 to �/2, as illustrated 
in OSB Figure 4.52. 

The expected value of e[n] is therefore 

E{e[n]} = 0, 

and its variance is 
�2 

�2 = .e 12 
Because it is a white-noise process, its autocorrelation is 

�2 

�ee[m] = σ[m],
12 

and its power spectral density is 
�2 

�ee(e
j� ) = . 

12 
The total noise power is therefore 

1	
� � �2 

d� = �ee[0]. 
2φ 

−� 12 

Now that we’ve introduced and analyzed this additive noise model, take a few seconds to think 
about how systems such as this one 

might be replaced by something like the following system, which typically uses less-expensive 
analog hardware: 
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As a further teaser, consider that a related configuration appears in a number of applications 
in practice, such as the AD73311 CODEC and many compact disk players: 

A common theme in each of these systems is that sampling rate conversion is used to help 
mitigate quantization effects. But how exactly does the process of rate conversion affect quan
tization noise? We’ll use the system depicted in OSB Figure 4.56 and its corresponding linear 
noise model (OSB Figure 4.57) to address this question. The total noise power at x̂[n] in OSB 
Figure 4.57 is, according to the linear noise model, �ee[0] = �2 

12 . When this signal is lowpass 
filtered by the ideal LPF with �c = φ/M , the total noise power is divided by M , resulting in a 
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� � � � 

total noise power of �2 
after lowpass filtering. As long as no aliasing occurs, the total noise 12M 

power at the output of a compressor-by-M is the same as that of its input signal, so we know 
that the total noise power at the output of the system is 

�2 

Total noise power at output of system in OSB Figure 4.57 = . 
12M 

Furthermore, the resulting noise at the output of the system is still a white-noise process, and 
�2 

its PSD is �ee(e
j�) = 12M . This is demonstrated graphically in OSB Figures 4.59 and 4.60. 

Note that when M is doubled, the total noise power is halved. Since � = XM 2
−B , 

�2 X2 4−B 
M= . 

12 12 

Therefore, doubling M corresponds to halving the total noise power, which implies 

X2 2−B X2 4−(B+ 
2 )1 �2 

M 
1 

M= = . 
2 12 12 12 

A doubling of M , then, has the same effect in terms of total noise power as adding an extra 
half-bit of precision to the quantizer. 

We’ll now discuss noise shaping, a method for further controlling quantization noise which has 
the ability to reduce in-band noise to a still greater degree. Let’s first consider the system in 
OSB Figure 4.68 and its associated additive noise model (OSB Figure 4.69). 

The system in OSB Figure 4.68 implements what might be considered a “first logical stab” at 
designing a linear system to reduce the effects of quantization noise. Looking at OSB Figure 
4.69 for further insight, the system works by first obtaining the error signal e[n], delaying it, and 
then using it to pre-compensate the input signal so that as long as e[n] is changing very slowly, 
it is mostly cancelled at y[n] by this pre-compensation. (Removing the delay block would cause 
the error at y[n] to be exactly 0, but it would also prevent the system from being physically 
realizable.) 

Exactly how slowly does e[n] need to be changing so that it is singificantly reduced? The 
question can be answered by determining how the system responds at y[n] to an input at e[n]. 
Using superposition, ŷ[n] = 0, and so y[n] = e[n] − e[n − 1]. The deterministic transfer function 
from e[n] to y[n] is therefore 

Y (ej�) 
= 1 − e −j� ,

E(ej�) 

with magnitude-squared response 

� 
Y (ej�) 

�2 
� � = 1 − e −j�


 
1 − ej�


 
= 2 − 2 cos � = 4 sin2(�/2). 

� E(ej�) � 
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The PSD of the noise at the system output then becomes 

�2 

�êê(e
j�) = 4 sin2(�/2),

12 

as depicted in OSB Figure 4.64. Lowpass filtering the resulting signal by an ideal LPF with 
�c = φ/M and compressing by M eliminates out-of-band noise and therefore reduces the overall 
noise power. This result is shown in OSB Figure 4.65, and a number of implementations of this 
type of cascaded system are discussed in OSB. 

Note that in practice, higher-order noise shaping systems are often designed to provide more 
detailed control of the resultant noise power spectrum. There are a number of practical issues 
associated with implementing such systems, and challenges in many of these cases relate to the 
additive noise model as an analytically convenient but nonetheless approximate representation. 

In parting, consider OSB Table 4.2, which compares the order of a noise shaper p and oversam
pling factor M to the equivalent reduction in quantizer bits. 
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