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Filter Design: FIR Filters 
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Unlike discrete-time IIR filters which are generally obtained by transforming continuous-
time IIR systems, FIR filters are almost always implemented in discrete time: a desired magni
tude response is approximated directly in the DT domain. In addition, a linear phase constraint 
is often imposed during FIR filter design. In this lecture, we will look at two FIR filter design 
techniques: by windowing and through the Parks-McClellan Algorithm. 

FIR Filter Design by Windowing 

In designing FIR filter, given the frequency response Hd(ejω) and impulse response hd[n] of 
an ideal system, we would like to approximate the infinitely long hd[n] with a finite sequence 
h[n], where h[n] = 0 except for 0 ≤ n ≤ M . Consider an ideal lowpass filter whose frequency 
response is finite and rectangular. A possible approximation error criterion can be defined as: 
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The optimal FIR approximation using the mean square error criterion gives the truncation of 
the ideal impulse response. We can represent h[n] as the product of the idal impulse response 
with a finite-duration rectangular window w[m]: 
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OSB Figure 7.19(a) depicts this convolution process implied by truncation of the ideal 
impulse response. The resulting magnitude approximation as the sinc pulse W (ej(ω−θ)) slides 
pass the ideal frequency response Hd(ejω) is shown in Figure 7.19(b). When W (ej(ω−θ)) moves 
across the discontinuity of Hd(ejω), a transition band results and ripples occur on both sides. As 
shown in OSB Figure 7.23, the main lobe of the window frequency response controls transition 
bandwidth Δω ≈ 2π(2/(M + 1)). The mainlobe is defined as the region between the first 
zero crossings on either side of the origin. It is desirable to have W (ejω) as concentrated in 
frequency as possible. On the other hand, sidelobes control passband and stopband ripples. 
The larger the area under the sidelobes, the larger the ripples. Passband and stopband ripples 
are approximately equal over a wide range of frequencies. 

For any given window length, we would like W (ejω) to be “most like an impulse,” with a 
narrow main lobe and low sidelobes. For example, OSB Figure 7.20 shows a magnitude response 
of a rectangular window where M = 7. Although increasing the rectangular window length M 
narrows the lobe widths, areas under each lobe remains constant, thus the ripples occur more 
rapidly, but with the same amplitude. To reduce the height of the sidelobes, we will need to 
taper the rectangular window smoothly to zero at the ends. Some commonly used windows are 
displayed in OSB Figure 7.21. Their properties are quantitatively compared in OSB Table 7.1. 
Corresponding analytical definitions can be found in Section 7.2.1. 

Comparison among these commonly used windows shows that at a given length, the rectan
gular window has the narrowest mainlobe; it gives the sharpest transition at the discontinuity 
of Hd(ejω). The Bartlett window is triangular, with a slope discontinuity at its center, while the 
Hanning, Hamming and Blackman windows are smoother. By tapering the window smoothly 
to zero, the sidelobes can be reduced in amplitudes, but the trade-off is larger main lobes. All 
of these windows are symmetric about M/2, hence their frequency responses have generalized 
linear phase. The Kaiser windows, as defined below, are a family of near optimal windows that 
allow controlled trade-offs between the sidelobe amplitudes and mainlobe widths. By varying 
the β parameter, it is possible to approximately duplicate the other types of windows using a 
Kaiser window. 

The Kaiser window family: 
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, β : shape parameter 

I0(·): zeroth-order modified Bessel Function of the first kind 

The definition implies that the Kaiser class of windows is parameterized by length (M + 1) and 
shape (β). The following figure illustrates its general form. As β increases, I0(β) also increases 
to give a smoother window. 
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Kaiser Window 

Given a set of filter specifications, the values of M and β needed can be determined numerically. 
As in OSB Figure 7.23, define: 

Transition bandwidth: Δω = ωs − ωp 

Peak approximation error: δ (passband: 1 ± δ stopband: ± δ) 
Stopband attenuation: A = −20 log10 δ 

Then the values of β, M needed to achieve A are 

β =


⎧
⎨ 
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0.1102(A− 8.7) A > 50 
0.5842(A− 21)0.4 + 0.07886(A− 21) 21 ≤ A ≤ 50 ,

A− 8 
M ≥ 

2.285Δω
A < 21 

. 
0 

See OSB Section 7.3 for examples of the Kaiser window method. 

Optimum FIR Filter Approximation: 
The Parks-McClellan Algorithm 

Although the rectangular windowing method provides the best mean-square approximation to 
a desired frequency response, just because it is optimal does not mean it is good. FIR filters 
designed with windows exhibit oscillatory behavior around the discontinuity of the ideal fre
quency response and does not allow separate control of the passband and stopband ripples. An 
alternative FIR design technique is the Parks-McClellan algorithm which is based on polynomial 
approximations. 

Filter Design as Polynomial Approximation 

Consider the DTFT of a causal FIR system of length M + 1: 

M�
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Let’s further constrain our system to a type I generalized linear-phase filter defined by a sym
metric impulse response with M even: 

h[n] = h[M − n] 0 ≤ n ≤ M, M even. 

Its corresponding frequency response is 
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Here h[n] is just he[n] with an integer delay of M/2. Rewrite the cos ωn terms using Chebyshev 
polynomials: 

Tn(x) = cos(n cos−1 x) cos ωn = Tn(cos ω)⇒ 
L=M/2 M/2

kAe(ejω) = 
� 

ak(cos ω)k = 
� 

akx |x=cos ω = P (x) x=cos ω .|
k=0 k=0 

Similar procedures can also be carried out for type II, III, IV systems (See Section 7.4 of OSB). 
In particular, when M is odd: 

H(ejω) = e−jωM/2 cos 
� ω � 

P (cos ω)
2 

The Alternation Theorem 

With Ae(ejω) written as a trignometric polynomial, Parks and McClellan applied the Alterna
tion Theorem from approximation theory to the filter design problem. The theorem is stated 
in Section 7.4 of OSB (p.489). Although the alternation theorem does not lead to any optimal 
filter design directly, what it allows us to do is to determine whether a filter response written as 
P (x) is uniquely optimal under the minimax error criterion, i.e., if it minimizes the maximum 
weighted approximation error. The Parks-McClellan Algorithm uses the alternation theorem 
to iteratively determine an optimal equiripple approximation. 
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OSB Figures 7.35 and 7.36 show a typical example of an optimal lowpass filter frequency 
response for L = 7 and its equivalent polynomial approximation function P (x) . The alternating 
points are ω1, ω2, . . . , ω8, π, where Ep(x) = Ep(cos ω) alternates between its maximum and 
minimum for L + 2 times. Such an approximation is said to be equiripple. The weighting 
function in this case satisfies: 

1
� 

K cos ωp ≤ cos ω ≤ 1 
,Wp(cos ω) = 

1 −1 ≤ cos ω ≤ ωs 

where K = δ1/δ2. P (x) turns into a hyperbolic cosine function outside of Fp = [−1, 1]. Since 
we are only interested in ω ∈ [0, π], we do not care about the behavior of P (x) outside of Fp. 
Comparison between the Figures 7.35 and 7.36 shows that for lowpass filters (or any piecewise 
constant filters), the alternations in P (x) can be counted directly from the frequency response 
Ae(ejω). 

In OSB Figure 7.37 are other examples of optimum lowpass filter approximations for L = 7. 
All four satisfy the alternation theorem. Nonetheless, the uniqueness of optimal filters implied 
by the alternation theorem is not violated because ωp and/or ωs are different for each. By 
comparison, OSB Figure 7.38 and 7.39 show approximations that are not optimal according to 
the alternation theorem. There are 8 alternations in each case. 

More generally, it can be shown that for type I lowpass filters, the following properties are 
implied by the alternation theorem: 

The maximum possible number of alternations of the error is L + 3. • 

Alternations will always occur at ωp and ωs.• 

The passband and stopband have equal ripples, and the transition band is monotonic. • 
All points with zero slope inside the passband and all points with zero slope inside the 
stopband (for 0 < ω < ωp and ωs < ω < π) will correspond to alternations, i.e., the filter 
is equiripple, except possibly at ω = 0, π. See Section 7.4 of OSB for proofs. 

So far we have focused on only optimal lowpass FIR filters, which have two approximation 
bands. For multi-band filters such as the bandpass filter, the alternation theorem still holds, 
but it does imply a different set of properties on the approximating polynomial. For example, 
the optimal approximation can have more than L + 3 alternations and have ripples (local 
maxima/minima) in the transition band. OSB Figure 7.47 is such an example. This system is 
optimal since the alternation theorem is satisfied, but the ripple in its transition band makes it 
undesirable in practical applications. Sections 7.5 and 7.6 of OSB give more examples of FIR 
equiripple approximations and further discuss practical implementation issues that should be 
considered during the filter design process. 

Parks-McClellan Algorithm 

The alternation theorem provides us with a tool for efficiently finding the optimum filter in the 
minimax sense. For a type I lowpass filter, the following set of equations is satisfied by the 
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optimum filter according to the alternation theorem: 

W (ωi)[Hd(ejωi ) − Ae(ejωi )] = (−1)i+1δ i = 1, 2, . . . , (L + 2) , 

where δ is the optimum error. Parks and McClellan found that given fixed ωp, ωs, an iterative 
algorithm finds the optimal approximating Ae(ejωi ): 

Algorithm 

1. Initial guess of (L + 2) extremal frequencies ω0, ω1, . . . , ωL+1. 

2. Solve for polynomial coefficients and (L + 2) equations in (L + 2) unknowns. 

3. Evaluate Ae(ejωi ) or E(ω) on a dense set of frequencies and choose a new set of extremal frequen
cies. 

4. Check whether extremal frequencies changed. If yes go to step 2. If no, algorithm has converged. 

This algorithm is described in more detail and illustrated by a flowchart in OSB Section 7.4.3. 
Keep in mind that the optimality of filters designed by the PM algorithm is only in the minimax 
error sense, and the equiripple characteristic may be less desirable when compared with filters 
designed by other techniques. 
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