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Lecture 16 

Linear Filtering with the DFT 

Reading: Sections 8.6 and 8.7 in Oppenheim, Schafer & Buck (OSB).


Circular Convolution 

x[n] and h[n] are two finite sequences of length N with DFTs denoted by X[k] and H[k], 
respectively. Let us form the product 

W [k] = X[k]H[k], 

and determine the sequence w[n] of length N for which the DFT is W [k]. 

x h[n], respectively. First, extend x[n] and h[n] to periodic sequences with period N, ˜[n] and ˜
x h[n] corresponds to multiplication of the correspond-Then, the periodic convolution of ˜[n] and ˜

ing periodic sequences of Fourier series coefficients (see OSB section 8.2.5). 

N −1

˜ ˜ ˜ ˜w[n] = 
� 

x˜ ˜[n]h[n − m] W [k] = X[k]H[k]↔ 
m=0 

The periodic sequence ˜[n] for which the DFS coefficients are ˜w W [k] corresponds to the periodic 
extension of the finite length sequence w[n] with period N. We can recover w[n] by extracting 

wone period of ˜[n]: 

˜w[n] = w[n]RN [n] 
N −1

˜ ˜= 
� 

x[m]h[n − m] 
m=0 

N −1

= 
� 

x[m]h[((n − m))N ] 
m=0 

This operation is called circular convolution and denoted 

w[n] = x[n] N h[n]. 
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Example: 

Consider two constant sequences of length N, x1[n] = x2[n], depicted in OSB Figure 8.15(a) 
and (b). 

The N-point DFT of x1[n] is,


N−1 N−1 1 − W NK


W kn = 
� 

W kn = NX1[k] = 
� 

x1[n] = 0 k = 0 N N 1 − W k �
0 0 N 

= N k = 0 

= e−j(2π/N).where WN Since x1[n] = x2[n],


X3[k] = X1[k]X2[k] = N 2δ[k] = N X1[k]


Using linearity, we can see that


x3[n] = x1[n] N x2[n] = N x1[n] = N 0 ≤ n ≤ N − 1


= 0 otherwise. 

The N-point circular convolution of x1[n] and x2[n] is depicted in OSB Figure 8.15(c). 

Example: 

Now, consider x1[n] = x2[n] as 2L-point sequences by augmenting them with L zeros as 
shown in OSB Figure 8.16(a) and (b). 

Performing a 2L-point circular convolution of the sequences, we get the sequence in OSB 
Figure 8.16(e), which is equal to the linear convolution of x1[n] and x2[n]. 

Circular Convolution as Linear Convolution with Aliasing 

We know that convolution of two sequences corresponds to multiplication of the corresponding 
Fourier transforms: 

jω)H(ejω)y[n] = x[n] [n] Y (ejω) = X(e∗ h ↔ 

If we define a DFT 
Y [k] = Y (ej(2πk/N)), 0 ≤ k ≤ N − 1, 

it follows that 

Y [k] = X(ej(2πk/N))H(ej(2πk/N)) = X[k]H [k], 0 ≤ k ≤ N − 1. 
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From our definition of the circular convolution w[n], W [k] = X[k]H [k], so 

W [k] = Y [k]. 

If x[n] and h[n] are sequences of length N, then w[n] has length N, but y[n] has the maximum 
length of (2N-1). In order to calculate the N-point DFT of y[n], we first form a periodic sequence 
of period N as follows: 

∞
ỹ[n] = 

� 
y[n − rN ] 

r=−∞ 

From the last lecture on the DFT, it follows that Y [k] (= W [k]) is the DFT of one period of 
ỹ[n]. Thus, the circular convolution of two finite-length sequences is equivalent to the linear 
convolution of the two sequences, followed by time aliasing. 

∞
w[n] = ỹ[n]RN [n] = 

� 
y[n − rN ] 0 ≤ n ≤ N − 1 

r=−∞ 

= 0 otherwise 

Example: 

Consider two identical sequences x1[n] and x2[n] of length L in OSB Figure 8.18(a). The 
linear convolution of the two sequences is shown in OSB Figure 8.18(b). OSB Figure 8.18(c) 
and (d) show two of the shifted versions of (b). The L-point circular convolution of x1[n] 
and x2[n] is shown in OSB Figure 8.18(e), which can be formed by summing (b), (c), and 
(d) in the interval 0 ≤ n ≤ L − 1. 

Since the length of the linear convolution is (2L-1), the result of the 2L-point circular con
volution in OSB Figure 8.18(f) is identical to the result of linear convolution. 

Now, consider two finite-duration sequences x1[n] and x2[n], with x1[n] of length L, and x2[n] 
of length P < L as illustrated in OSB Figure 8.19. Let x3[n] be the linear convolution of x1[n] 
and x2[n]. 

To determine the L-point circular convolution x3p [n], we use the time-aliasing interpretation: 

∞
x3p [n] = x1[n] L x2[n] = 

� 
x3[n − rL], 0 ≤ n ≤ L − 1, 

r=−∞ 

= 0, otherwise. 

OSB Figure 8.20 shows the terms for (a) r = 0, (b) r = −1, and (c) r = 1. When the terms 
are summed to calculate the circular convolution in OSB Figure 8.20(d), the last (P-1) points 
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of x3[n + L] will be added to the first (P − 1) points of x3[n]. 

We can alternatively view the process of forming the circular convolution x3p [n] as wrapping 
the linear convolution x3[n] around a cylinder of circumference L. As shown in OSB Figure 
8.21, the first (P − 1) points are corrupted by time aliasing, and the points from n = P − 1 to 
n = L − 1 are identical to the corresponding points of the linear convolution. 

As shown in OSB Figure 8.21, it is clear that time aliasing in the circular convolution can be 
avoided if N, the length of the DFT, is larger than or equal to (L + P − 1). 

Block Convolution 

In lecture 19, we will learn highly efficient algorithms for computing the DFT. Because of these 
algorithms, it is computationally efficient to implement a linear convolution of two sequences 
by computing the DFTs, multiplying them, and computing the IDFT. Since multiplying the 
DFTs corresponds to circular convolution of the corresponding sequences, we must avoid time 
aliasing to recover linear convolution from the result of the IDFT. 

Consider an input data x[n] of length N, and an FIR filter h[n] of length P. The linear convolu
tion of the two sequences has length (N + P − 1). To avoid time aliasing, the DFT length must 
be at least (N + P − 1). However, in many applications, such as filtering a speech waveform, the 
length of the input data is of indefinite duration as depicted in OSB Figure 8.22. Computing 
the DFT of the entire input signal in this case can be impractical, and will cause a long delay 
since we need all samples of the input before filtering. The solution is to use block convolution, 
in which the input signal is segmented into sections of length L. Then, we can use the DFT to 
convolve each section with the FIR, and get the desired linear convolution by fitting the filtered 
sections. 

Overlap-add Method 

First, segment the input signal into sections of L, and convolve each section with the FIR of 
length P. The linear convolution of one section of the input and the FIR will result in a sequence 
y[n] of length (L + P − 1). Therefore, we can use the DFT of length (L + P − 1) to compute 
the convolution without time aliasing. As shown in OSB Figure 8.23, the nonzero points in 
the filtered sections will overlap by (P − 1) points, and these overlap points should be added 
together to construct the output. This procedure is called overlap-add method. 

Overlap-save Method 

In the overlap-add method, after computing each section, we need to store (P − 1) values of 
y[n] and and wait for the next data segment to add overlapped points. In cases this is not 
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desirable, we can use an alternative method, overlap-save method. 

In OSB Figure 8.21, we saw that in a circular convolution not all points are corrupted by time 
aliasing. The first (P − 1) points of each segment are time aliased, but we have L − (P − 1) = 
(L − P + 1) points that are equal to the linear convolution. Therefore, as shown in OSB Figure 
8.24, the portion of each output section in the region 0 ≤ n ≤ P − 2 is discarded, and the 
remaining samples are saved to construct the final filtered output. 
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