
Massachusetts Institute of Technology
Department of Electrical Engineering & Computer Science

6.345 Automatic Speech Recognition
Spring, 2003

 Issued: 02/28/03
 Due: 03/12/03

Assignment 4
Acoustic Phonetics, Acoustic Modeling,

and Pattern Classification

Introduction

The purpose of this assignment is to strengthen your understanding of acoustic phonetics, acous-
tic modeling, and pattern classification. You will first investigate the acoustic properties of the
fricative sounds of English [s z S Z f v T D] by examining acoustic measurements taken from
examples of these phones extracted from the TIMIT corpus. Next, you will investigate several dif-
ferent techniques for modeling these measurements, and then perform a set of pattern classification
experiments using these techniques.

As in previous assignments, the following tasks (marked by T’s) should be completed during
your lab session. The answers to the questions (marked by Q’s) should be handed in on the due
date.

Getting Started

Assignment 4 will be performed using MATLAB®, a mathematical software package created by
MathWorks, Inc. This handout contains sufficient documentation to complete the laboratory exer-
cises. Additional information is available online via the help command within MATLAB®. To start
the lab, type the following at the UNIX prompt:

% start_lab4.cmd

This command will start up MATLAB®. After initialization, the MATLAB® command-line prompt will
appear. At the prompt, type the following command:

>> init_lab4

This command will load in the data that you will use during the assignment.

1

Description of the Data

The data used in this assignment was extracted from the TIMIT corpus. A set of eight different
phones, the fricatives [s z S Z f v T D], were chosen for analysis in this assignment. In MATLAB®

the labels ’s’, ’z’, ’sh’, ’zh’, ’f’, ’v’, ’th’, and ’dh’, respectively, are used to represent these eight
phones. An observation vector of six measurements was created for every example of these phones
in the corpus. The six measurements are:

� MFCC0: The average value of the zeroth MFCC coefficient.
� MFCC1: The average value of the first MFCC coefficient.
� TOT Energy: The average total log energy.
� LF Energy: The average log energy between 50 Hz and 200 Hz (low-frequency energy).
� MFR Energy: The ratio of the log energy between 2 kHz and 4 kHz and that between 2 kHz

and 6 kHz (mid-frequency ratio energy).
� Duration: The log duration of the phone.

Different groupings of the above phones have been created to facilitate analysis during the
assignment. After the Assignment 4 data has been loaded, type the following command:

>> whos

This command will list the MATLAB variable names for each piece of data used in the assignment.
The following is a description of the variables:

� For Part I of the assignment:

– fric AP: A set of vectors for the phones [s z S Z] (where AP refers to alveolar and
palatal). Each row in the matrix corresponds to an instance of a phone, and the columns
contain the feature measurements for each instance.

– fric AP index: A set of indices indicating the “phone class” that each row vector in
fric AP is associated with. These labels partition the data into two classes: alveolar and
palatal. This matrix also contains information about the left and right context phones.

– fric SW: A set of vectors for the phones [s S f T] (SW = strong/weak).

– fric SW index: A set of indices indicating the “phone class” that each row vector in
fric SW is associated with. Partitions the data into two classes: strong and weak.

– fric VU: A set of vectors for the phones [z v s f] (VU = voiced/unvoiced).

– fric VU index: A set of indices indicating the “phone class” that each row vector in
fric VU is associated with. Partitions the data into two classes: voiced and unvoiced.

� For Parts II and III of the assignment:

– train: The set of training vectors for the phones [z S f D]. Each row in the matrix is a
phone instance and the columns contain the feature measurements.

2

– train index: A set of indices indicating the “phone class” that each row vector in train
is associated with. Also contains information about the left and right context phones.

– test: The set of test vectors for the phones [z S f D].

– test index: A set of indices indicating the “phone class” that each row vector in test is
associated with.

– train � label � : Each set of this form contains only the training vectors for a particular
phone, e.g., train z contains the training vectors for the phone [z].

– train � label � index: A set of indices indicating the “phone class” that each row vec-
tor in train � label � is associated with.

– train � N � : Each set of this form contains a subset of the training vectors. ����� has
77 vectors, ���	� has 152 vectors, ����
 has 302 vectors, and ����� has 601 vectors.

– train � N � index: A set of indices indicating the “phone class” that each row vector
in train � N � is associated with.

� Additional variables:

– measurements: A vector of strings containing a label for each feature measurement.
This is used internally by some plotting routines to label the axes.

– phone labels: A vector of strings containing a label for each phone index. This is
passed into some plotting routines if you want to label individual data points.

– phone colors: A vector of strings indicating the color and symbol type to use for
plotting each phone listed in phone labels. This is used internally by some plotting
routines to color points and text.

To observe the contents of any of these variables simply enter the name of the variable at the
MATLAB prompt. For example, for the variable measurements:

>> measurements

measurements =

MFCC0
MFCC1
TOT Energy
LF Energy
MFR Energy
Duration

Because many of the variables contain extremely large amounts of data, you may wish to
observe only small portions of the entire data at a time. You can do this by expressing a range to
be viewed. For example, for the variable train we can view the first three vectors of the set with
the command:

3

>> train(1:3,:)

ans =

8.8863 -1.6315 7.7928 5.5401 17.6856 8.0378
7.8264 -1.2994 7.3976 4.8848 16.4082 8.1038
9.0345 -2.1741 8.4573 5.8948 16.9312 7.3185

The following is a table of the IPA symbols for the phones and the corresponding TIMIT labels
along with example occurrences. This is provided as a reference so that you can understand what
the TIMIT phone labels mean when you see them in the assignment plots.

IPA TIMIT Example IPA TIMIT Example
[a] aa bob [|] ix debit
[@] ae bat [i] iy beet
[^] ah but [J] jh joke
[O] ao bought [k] k key
[a⁄] aw bout [k›] kcl k closure
[{] ax about [l] l lay
[{‡] ax-h potato [m] m mom
[}] axr butter [n] n noon
[a¤] ay bite [4] ng sing
[b] b bee [FÊ] nx winner
[b›] bcl b closure [o] ow boat
[C] ch choke [O¤] oy boy
[d] d day [p] p pea
[d›] dcl d closure [√] pau pause
[D] dh then [p›] pcl p closure
[F] dx muddy [?] q glottal stop
[E] eh bet [r] r ray
[lÍ] el bottle [s] s sea
[mÍ] em bottom [S] sh she
[nÍ] en button [t] t tea
[4Í] eng Washington [t›] tcl t closure
[∑] epi epenthetic silence [T] th thin
[5] er bird [U] uh book
[e] ey bait [u] uw boot
[f] f f in [uÚ] ux toot
[g] g gay [v] v van
[g›] gcl g closure [w] w way
[h] hh hay [y] y yacht
[H] hv ahead [z] z zone
[I] ih bit [Z] zh azure
- h# utterance initial and final silence

4

Functions and Commands

To examine and manipulate the data, a locker of useful acoustic modeling and pattern classification
commands has been created. To obtain a list of these commands, type:

>> help assign4

To read a manual page description of any of these commands, type:

>> help <command_name>

Saving Plots as Postscript Files

You can save the current plot displayed in the MATLAB® figure window by using the print com-
mand:

>> print -deps matlab_plot.eps

This will save the current plot in Encapsulated PostScript format to the file matlab plot.eps
For more information about the print command, type help print at the MATLAB® prompt.

Multiple Plot Windows

By default, MATLAB® uses one “figure window” for drawing plots. You can create additional figure
windows to display multiple plots simultaneously by using the figure command. Type help
figure at the MATLAB® prompt for more information about how to use this command.

Alternatively, if you want to generate multiple “subplots” within one figure window, you can
use the subplot command. Type help subplot at the MATLAB® prompt for more information
about how to use this command.

Part I: Acoustic Phonetics

Understanding the properties of acoustic measurements and their relationship to the different
phones is an important first step in determining how to model the features/measurements and what
approach to pattern classification should be used.

In this part of the assignment, you will investigate the acoustic properties of the fricative sounds
of English [s z S Z f v T D]. We will examine

� how phonetic contrasts may be related to various acoustic measurements, and

� the influences of context on the acoustic properties of fricative speech sounds.

Before beginning this part of the assignment, we recommend that you reacquaint yourself with
the general acoustic-phonetic properties of fricatives. Please refer to the lecture notes on acoustic
phonetics.

5

Strong vs. Weak Fricatives

We will begin our investigation by examining the acoustic correlates of the feature strident. The
strident or strong fricatives are [s z S Z], and the non-strident or weak fricatives are [f v T D]. For
this task, we will use the fric SW data set, which consists of the fricatives [s S f T] partitioned into
two classes: strong and weak.

T1: Generate histogram plots (using plot histograms) of this data set for each of the six
different measurements and examine their abilities to separate the two classes. For example,
to create a histogram plot using the first feature measurement (MFCC0), use the following
command:

>> plot_histograms(fric_SW,1,fric_SW_index);

For the average total energy measurement, the overlaid histograms for the two classes
should reveal significantly different distributions for strong vs. weak fricatives. However,
there should be some overlap between them. We will now take a closer look at some of
the unusually strong weak fricatives whose average total energy puts them in the overlap
region. This is best accomplished using scatter plots.

T2: Generate a two-dimensional scatter plot using the plot clusters command for the fric SW
data. For example, to generate a scatter plot of the first two dimensions of the data, use the
following command:

>> plot_clusters(fric_SW,1,2,fric_SW_index);

Scatter plots enable you to see how multiple measurements interact with each other. In this
plot, each phone occurrence is represented by a colored symbol at the appropriate coordi-
nates. Explore different pairs of measurements and examine their abilities to discriminate
between the two classes. Notice how the combined use of two measurements can lead to
better separation of the two classes than using a single measurement alone.

T3: Redraw the scatter plot using the two most discriminating measurements derived from T2 as
the plot dimensions. One of them should be average total energy. This time, also plot the
phone labels of the data points by including phone labels in the call to plot clusters
as follows (this plot may be a bit slow to generate):

>> plot_clusters(fric_SW,2,3,fric_SW_index,phone_labels);

The plotted labels include information not only about the identity of the specified “middle”
phone, but also about the identity of its left and right neighbors. The labels have the following
format: left middle right.

Zoom in (by clicking the left mouse button over the region of interest in the figure; click
the middle button to zoom out) on the overlap region where the weak fricatives have large
average total energy. You may also want to resize the plot to get a better view. Examine
the phonetic contexts of these weak fricatives.

6

Q1: Can you identify a phonetic environment in which unusually strong [f T]’s appear?
For this and all subsequent similar questions, if you are having trouble determining the
relevant contexts from the scatter plot alone, try to come up with some ideas based
on what you know from lecture about acoustic phonetics, and test your hypotheses by
looking at the scatter plot. If there are any contextual effects that you think should be
there but are not evident in the scatter plot, try to describe the effects and why they may
not be evident.

Voiced vs. Unvoiced Fricatives

We will follow a similar procedure to contrast the distributions of the voiced [z Z v D] and unvoiced
[s S f T] fricatives. For this task, we will use the fric VU data set, which consists of the fricatives
[z v s f] partitioned into two classes: voiced and unvoiced.

T4: Using the fric VU data set, examine histogram plots (using plot histograms) for each
of the six different measurements and examine their ability to separate the two classes.

Notice that while the distributions of duration for the voiced and unvoiced fricatives are
distinguishable, there is also substantial overlap between them. This is due to the fact that
acoustic properties of phonemes are affected by the environments in which they appear.

T5: Generate a two-dimensional scatter plot using the plot clusters command for the fric VU
data using the duration and low-frequency energy measurements. Include the phone labels
in the plot.

Q2: From the set of available contexts provided in the data sample, try to determine two
factors that have a significant influence on fricative durations, i.e., what contexts can
cause a fricative to be lengthened? To be shortened?

T6: Voiced and voiceless fricatives also differ in the amount of low-frequency energy. Examine
this acoustic difference using the same procedure as outlined above, using the low-frequency
energy measurement of energy from 50 to 200 Hz.

Q3: Are there phonetic environments that should be established before you can reliably use
low-frequency energy as a cue to distinguish voicing?

Place of Articulation

We will now contrast the distributions of certain acoustic measurements for the alveolar [s z] and
palatal [S Z] fricatives. The data set containing these four fricatives, partitioned into alveolar vs.
palatal, is the fric AP data set.

T7: Using the fric AP data set, examine histogram plots (using plot histograms) for each
of the six different measurements and examine their abilities to separate the two classes.

Q4: The ratio of the energy between 2 kHz and 4 kHz and that between 2 kHz and 6 kHz
(MFR Energy) is a good discriminating measurement. Why?

7

T8: Generate two-dimensional scatter plots using the plot clusters command for the fric AP
data using different pairs of measurements. Include the phone labels in the plot and examine
the influence of phonetic context.

Q5: What phonetic context can cause the alveolar fricatives to look like palatal fricatives
(in terms of the MFR Energy measurement)?

Q6: Based on your investigation of some of the acoustic properties of American English frica-
tives, as well as other acoustic-phonetic properties discussed in class, briefly describe and
justify what acoustic measurements you would use to distinguish the eight fricatives from
each other. Specify the context(s) in which each measurement would be used. You can use
measurements other than the six included in the MATLAB® data.

Part II: Acoustic Modeling

In this part of the assignment, we will try to model the distributions of the acoustic measurements
examined during the first part of the assignment. For the rest of the assignment, we will focus on
trying to distinguish between the four fricatives [z S f D].

T9: Using the train data set (and the corresponding train index indices), generate histogram plots
(using plot histograms) for each of the six different measurements and examine their
ability to separate the four different fricatives.

T10: Generate two-dimensional scatter plots using the plot clusters command for the train
data. Explore different pairs of measurements and examine their abilities to discriminate
between the different classes. For these plots, you do not have to plot the phone labels.

Q7: Based on your observations of the scatter plots, which two measurements are the most
correlated? Which two are the most uncorrelated?

T11: We will now model the distributions of the acoustic measurement features using Gaussian
and mixture Gaussian distributions. Gaussian and mixture Gaussian models can be trained
using the commands train gaussian and train mixture, respectively. Train a single full-
covariance Gaussian model for the phone [z] (train z data set) using the command:

>> [gmean, gvar] = train_gaussian(train_z);

The mean vector and the covariance matrix are saved in gmean and gvar, respectively. We
can also get the corresponding diagonal-covariance Gaussian model by diagonalizing the
covariance matrix (note that the mean vector stays the same):

>> dmean = gmean;
>> dvar = diag(diag(gvar));

To train a four-component mixture diagonal-covariance Gaussian model for the phone [z],
use the command:

8

>> [mmean, mvar, mwgt] = train_mixture(train_z,4);

The set of mean vectors, variance vectors (only diagonals of the covariance matrices), and
mixture weights are saved in mmean, mvar, and mwgt, respectively.

T12: We will now examine how well or poorly the different Gaussian models fit the feature
measurements of the training data. To do this, we can compare plots of the measure-
ment distributions with plots of the density estimates of the Gaussian models using the
plot histograms and plot gaussian commands. For example, to see the fit of the
full-covariance Gaussian model to the first dimension (MFCC0) of the data, we can type:

>> plot_histograms(train_z,1); hold
>> plot_gaussian(gmean,gvar,1); hold

The hold command toggles whether to hold on to the current plot, so that another plot
can be overlaid, or to draw a new plot. Examine each of the six dimensions to see which
dimensions are sufficiently represented by a Gaussian density. To similarly examine the
mixture diagonal-covariance Gaussian model, we can use the plot mixture command:

>> plot_histograms(train_z,1); hold
>> plot_mixture(mmean,mvar,mwgt,1); hold

Examine how well the mixture diagonal-covariance Gaussian model fits each of the six di-
mensions.

T13: Examination of one-dimensional plots of the data does not allow the observation of any cor-
relation between the different dimensions. To examine how well the models capture correla-
tion information, we can superimpose scatter plots of the training data and two-dimensional
“contour plots” of the Gaussian models. Contour plots display lines of equal density. To do
this, we can use the plot clusters and plot gauss contour commands:

>> plot_clusters(train_z,2,3); hold;
>> plot_gauss_contour(dmean,dvar,2,3); hold;

The above commands will draw a scatter plot of the second and third dimensions of the
train z data with the corresponding diagonal-covariance Gaussian density contours super-
imposed on top. To examine the fit of the full-covariance Gaussian density, we can use:

>> plot_clusters(train_z,2,3); hold;
>> plot_gauss_contour(gmean,gvar,2,3); hold;

To make a similar plot using the mixture diagonal-covariance Gaussian density:

>> plot_clusters(train_z,2,3); hold;
>> plot_mix_contour(mmean,mvar,mwgt,2,3); hold;

9

Examine the diagonal-covariance Gaussian, full-covariance Gaussian, and mixture diagonal-
covariance Gaussian models over different pairs of measurements and note how well each
model fits the data.

Q8: On the whole, which model (diagonal-covariance Gaussian, full-covariance Gaussian,
or mixture diagonal-covariance Gaussian) appears most appropriate for modeling the
[z] data based on your observations of the different plots? What advantages and short-
comings does each model possess?

T14: Another way to measure how well a model captures information about the training data is
to compute the likelihood, or log probability, score of the training data when tested with the
trained model. To find the total log probability of the training data when using the diagonal-
covariance Gaussian, full-covariance Gaussian, and mixture diagonal-covariance Gaussian
models use the following commands:

>> sum (log (gaussian_probs (train_z,dmean,dvar)))
>> sum (log (gaussian_probs (train_z,gmean,gvar)))
>> sum (log (mixture_probs (train_z,mmean,mvar,mwgt)))

The commands gaussian probs and mixture probs compute the probabilities of
each token in the given data using the specified Gaussian or mixture Gaussian model. We
then take the log of the probabilities and sum them up over the entire data set to get the total
likelihood. This assumes that the individual tokens in the data set are independent of one
another.

Q9: By examining the likelihood values of the training data, which model might you expect
to perform best when classifying new test data? Under what circumstances might a
high training data likelihood not translate into an accurate model when classifying new
test data?

T15: Diagonal-covariance Gaussian models assume that the different feature dimensions in the
data vectors are independent of one another. As we noticed from the scatter plots above, this
is not always the case. This is also evident if we compute the covariance matrices of the
training and test data using the command cov as follows:

>> cov(train)
>> cov(test)

Notice that the off-diagonal entries in the matrix are not zero. In these situations, diagonal-
covariance Gaussian models may not be the best choice. Two possible solutions to this
problem are 1) to use full-covariance Gaussian models and/or 2) to transform the data vec-
tors so that the dimensions are independent. One procedure to perform the latter is called
principal components analysis or PCA. Generate a new set of training and test vectors by
performing PCA using the pcs (principal components scaling) command as follows:

>> [rtrain, rtest] = pcs(train,test);

10

This command performs principal components analysis on the train set data and uses the
results to rotate and scale both the train and test sets, storing them in rtrain and
rtest, respectively. Examine the covariance matrices of the new transformed training and
test data:

>> cov(rtrain)
>> cov(rtest)

Q10: Describe the structure of the covariance matrix of the rtrain data. Why isn’t the
covariance matrix of the rtest data the same as that of the rtrain data? Is there any
reason to prefer using PCA to transform the data versus simply using full-covariance
Gaussian models?

Part III: Pattern Classification

In this part of the assignment, we will make use of the modeling techniques that we examined
in the previous section to perform pattern classification. In particular, we will examine maximum
likelihood (ML) classification and maximum a posteriori probability (MAP) classification with the
different Gaussian models. The two relevant commands are ml classify and map classify. These
commands take two sets of data: a training set and a test set. They use the training set to train the
parameters of the specified Gaussian model and then use the trained model to perform classification
on the test set. For a more detailed description of these commands, enter help ml classify
and help map classify at the MATLAB® prompt. Note that we will be using the PCA-rotated
and scaled versions of the training (rtrain) and test (rtest) data sets.

For each of the following tasks, carefully note the classifier’s accuracy as the different experi-
ments are conducted. Try to understand the relative merits and shortcomings of each approach.

T16: Perform ML classification on the data using one diagonal-covariance Gaussian density per
class by typing the following command:

>> ml_classify(rtrain,train_index,rtest,test_index,’diag’);

This command will train up the specified model using the training data, perform classifica-
tion on the test data, and return some performance statistics:

Percent correct: 86.885

dh f sh z
dh 235 10 0 16
f 11 263 1 5
sh 0 1 128 5
z 9 10 68 275

The “Percent correct” is simply the accuracy of the model on the test data. The matrix below
it is the confusion matrix. The rows of the confusion matrix contain the correct phone labels

11

of the data, while the columns contain the phone labels hypothesized by the classifier. Each
entry, � �������	� , in the matrix indicates the number of class

�
vectors classified as class

�
. For

example, 235 [D] vectors were correctly classified as [D] but 10 were misclassified as [f], 16
were misclassified as [z], and none were confused with [S]. Repeat the experiment using the
MAP classifier as follows:

>> map_classify(rtrain,train_index,rtest,test_index,’diag’);

Q11: Why does the MAP classifier have a higher accuracy than the ML classifier?

T17: Perform MAP classification using a full-covariance Gaussian density function with the fol-
lowing command:

>> map_classify(rtrain,train_index,rtest,test_index,’full’);

T18: Perform MAP classification with mixture densities using two diagonal-covariance Gaussians
per mixture density with the following command:

>> map_classify(rtrain,train_index,rtest,test_index,’mix’,2);

Repeat the above classification experiment several times and note how the performance
varies as the mixtures are randomly initialized from different starting points. Then vary
the number of Gaussians per mixture to 4, 8, 16, 32, and 64 and note how the performance
changes.

Q12: What happens to classification performance as the number of mixture components is
increased? Why?

Q13: Which classifier (diagonal-covariance, full-covariance, or mixture diagonal-covariance)
has the best performance? Does this match what you anticipated from examining the
distributions and likelihoods in the previous section? What reasons might explain the
relative performances of each of the classifiers?

T19: By examining the performance of a classifier over varying training set sizes, we can get a
sense of how well a classifier’s parameters are trained. As the estimates of a classifier’s
parameters begin to converge (with increasing amounts of training data), it is expected that
the classifier’s performance on training data vs. test data will also converge. Examine the
performance of the full-covariance Gaussian classifier using a training set containing only
77 training vectors (train1) with the following commands:

>> map_classify(train1,train1_index,rtest,test_index,’full’);
>> map_classify(train1,train1_index,train1,train1_index,’full’);

The first command gives the test set accuracy while second command provides the training
set accuracy (i.e., testing on the training set). Repeat the above experiment using different-
sized training sets: train2 (152 vectors), train3 (302 vectors), train4 (601 vectors), and
rtrain (1199 vectors). Note that these training sets have already been properly PCA-rotated
and scaled.

12

Q14: Does the performance of the classifier on train and test data converge as the size of
the training set is increased? Do you feel that the full-covariance Gaussian models are
sufficiently trained using the full training set or is additional data needed to provide
more accurate estimates of the model’s parameters?

T20: When only a finite amount of test data is available, it is often difficult to determine whether
or not the difference in the observed performance of two different classifiers is statistically
significant or not. Other factors can also affect classifier performance; recall the effect of
random initialization in the training of the Gaussian mixture models in T18.

To test the statistical significance of the difference in performance between two different
classifiers evaluated on the same test set, the McNemar significance test can be used. To
perform this test, we need to generate a binary vector for each classifier specifying whether
each test vector is correctly or incorrectly identified by that classifier. This can be performed
with the following commands:

>> cdiag = map_classify(rtrain,train_index,rtest,test_index,’diag’);
>> cfull = map_classify(rtrain,train_index,rtest,test_index,’full’);
>> cmix = map_classify(rtrain,train_index,rtest,test_index,’mix’,4);

The McNemar test for comparing the diagonal-covariance Gaussian classifier with the full-
covariance Gaussian classifier can be performed with the following command:

>> [S, N] = mcnemar(cdiag,cfull)

where S is the significance level of the test and N is the contingency table used in the test.
Repeat the McNemar test to compare the full-covariance Gaussian classifier with the mixture
diagonal-covariance Gaussian classifier and to compare the diagonal-covariance Gaussian
classifier with the mixture diagonal-covariance Gaussian classifier. Typically the difference
in performance of two classifiers is considered statistically significant if the significance level
is .005 or smaller.

Q15: What are the McNemar significance levels when comparing the diagonal-covariance
Gaussian classifier with the full-covariance Gaussian classifier? The full-covariance
Gaussian classifier vs. the mixture diagonal-covariance Gaussian classifier? The diagonal-
covariance Gaussian classifier vs. the mixture diagonal-covariance Gaussian classifier?
Considering these values, how would you qualitatively describe the relative perfor-
mances of the three different classifiers?

13

farnaz
MATLAB® is a trademark of The MathWorks, Inc.

