Lecture # 1 Session 2003 Introduction to Automatic Speech Recognition

- Lectures: Jim Glass & guest lecturers
- Introduction to ASR
 - Problem definition
 - State of the art examples
- Course overview
 - Lecture outline
 - Assignments
 - Term Project
 - Grading

Virtues of Spoken Language

- Natural: Requires no special training
- Flexible: Leaves hands and eyes free
- Efficient: Has high data rate
- **Economical:** Can be transmitted/received inexpensively

Speech interfaces are ideal for information access and management when:

- The information space is broad and complex,
- The users are technically naive, or
- Only telephones are available.

Diverse Sources of Constraint for Spoken Language Communication

Acoustic: Phonetic:

Phonological:

Phonotactic:

Syntactic:

Semantic:

Contextual:

human vocal tract

let us pray lettuce spray

gas shortage fish sandwich

blit vnuk

I am flying to Chicago tomorrow tomorrow I flying Chicago am to

Is the baby crying Is the bay bee crying

It is easy to recognize speech It is easy to wreck a nice beach

Automatic Speech Recognition

- An ASR system converts the speech signal into words
- The recognized words can be
 - The final output, or
 - The input to natural language processing

Application Areas for Speech Based Interfaces

- Mostly input (recognition only)
 - Simple command and control
 - Simple data entry (over the phone)
 - Dictation
- Interactive conversation (understanding needed)
 - Information kiosks
 - Transactional processing
 - Intelligent agents

Basic Speech Recognition Challenges

- Co-articulation
- Speaker independence
 - Dialect variations
 - Non-native speakers
- Spontaneous speech
 - Disfluencies
 - Out-of-vocabulary words
- Language modelling
- Noise robustness

Phonological Variation Example

• The acoustic realization of a phoneme depends strongly on the context in which it occurs

Examples Contrasting Read and Spontaneous Speech (Navigation Domain)

Filled and unfilled pauses: Lengthened words: False starts: read, spontaneous read, spontaneous read, spontaneous

Sometimes Real Data will Dictate Technology Requirements (City Name Domain)

Technology Required Simple word spotting Complex word spotting

Speech understanding

Example

Um, Braintree Eh yes, Avis rent-a-car in Boston Hello, please Brighton, uh, can I have the number of Earthscape, in, uh, on Nonantum Street Woburn, uh, Somerville. I'm sorry

Parameters that Characterize the Capabilities of ASR Systems

Parameters	Range
Speaking Mode:	Isolated word to continuous speech
Speaking Style:	Read speech to spontaneous speech
Enrollment:	Speaker-dependent to speaker-independent
Vocabulary:	Small (<20 words) to large (>50,000 words)
Language Model:	Finite-state to context-sensitive
Perplexity:	Small (<10) to large (>200)
SNR:	High (>30dB) to low (<10dB)
Transducer:	Noise-cancelling microphone to cell phone

ASR Trends*: Then and Now

	before mid 70's	mid 70's - mid 80's	after mid 80's
Recognition Units:	whole-word and sub-word units	sub-word units	sub-word units
Modeling Approaches:	heuristic and ad hoc	template matching	mathematical and formal
	rule-based and declarative	deterministic and data-driven	probabilistic and data-driven
Knowledge Representation:	heterogeneous and complex	homogeneous and simple	homogeneous and simple
Knowledge Acquisition:	intense knowledge engineering	embedded in simple structure	automatic learning

* There are, of course, many exceptions.

Speech Recognition: Where Are We Now?

- High performance, speaker-independent speech recognition is now possible
 - Large vocabulary (for cooperative speakers in benign environments)
 - Moderate vocabulary (for spontaneous speech over the phone)
- Commercial recognition systems are now available
 - Dictation (e.g., Dragon, IBM, L&H, Philips) Scansoft
 - Telephone transactions (e.g., AT&T, Nuance, Philips, SpeechWorks, TellMe, etc.)
- When well-matched to applications, technology is able to help perform real work

Examples of ASR Performance

- Speaker-independent, continuousspeech ASR now possible
- Digit recognition over the telephone with word error rate of 0.3%
- Error rate cut in half every two years for moderate vocabulary tasks
- Error for spontaneous speech more than twice that of read speech
- Conversational speech, involving multiple speakers and poor acoustic environment, remains a challenge
- Tens of hours of training data to port to a different domain
- Statistical modeling using automatic training achieves significant advances

Important Lessons Learned

- Statistical modeling and data-driven approaches have proved to be powerful
- Research infrastructure is crucial:
 - Large amounts of linguistic data
 - Evaluation methodologies
- Availability and affordability of computing power lead to shorter technology development cycles and real-time systems
- Performance-driven paradigm accelerates technology development
- Interdisciplinary collaboration produces enhanced capabilities (e.g., spoken language understanding)

Major Components in a Speech Recognition System

- Speech recognition is the problem of deciding on
 - How to represent the signal
 - How to model the constraints
 - How to search for the most optimal answer

Demo: Continuous Dictation

- IBM ViaVoice running on a ThinkPad
- Trained for a quiet office (classroom performance not optimal)

Demo: Simple Telephone Transactions

- Developed by SpeechWorks International (there are others)
- Shipping cost information for Fedex (1-800-GO-FEDEX)
 - Provides information on:
 - * Package types
 - * Source and destination zip codes
 - * Weight, size, value
 - * Service type
 - Handles all US rate information calls
- Automated Brokerage System for E*Trade
 - Supports quotes and trades
 - * Using symbols or names
 - * For stocks, options, and mutual funds
 - Users can "barge in" at any time
 - Nationwide deployment for over 450,000 customers

Conversational Interfaces: The Next Generation

- Enables us to converse with machines (in much the same way we communicate with one another) in order to create, access, and manage information and to solve problems
- Augments speech recognition technology with natural language technology in order to *understand* the verbal input
- Can engage in a *dialogue* with a user during the interaction
- Uses natural language to speak the desired response
- Is what Hollywood and every "futurist" says we should have!

A Conversational System Architecture

Demo: Conversational Interface

- Jupiter weather information system
 - Access through telephone
 - 500 cities worldwide
 - Harvest weather information from the Web several times daily

(Real) Data Improves Performance (Weather Domain)

- Longitudinal evaluations show improvements
- Collecting real data improves performance:
 - Enables increased complexity and improved robustness for acoustic and language models
 - Better match than laboratory recording conditions
- Users come in all kinds

But We Are Far from Done!

Corpus	Speech Type	Lexicon Size	Word Error Rate (%)	Human Error Rate (%)
Digit Strings (phone)	spontaneous	10	0.3	0.009
Resource Management	read	1000	3.6	0.1
ATIS	spontaneous	2000	2	
Wall Street Journal	read	64000	6.6	1
Radio News	mixed	64000	13.5	
Switchboard (phone)	conversation	10000	19.3	4
Call Home (phone)	conversation	10000	30	

MIT

Course Outline

Course Logistics

- Lectures: Two sessions/week, 1.5 hours/session
- Labs: All week during school hours

Grading

- 9 Assignments 45%
 2 Quizzes 30%
- Term Project (about 4 weeks) 25%

MIT

Assignments

- There will be 9 weekly assignments
 - Problems that expand on the lecture material
 - Lab assignments to reinforce the lecture material
 - Assignments are due the following week on Wednesday
- Lab work will be done in the computer lab
- Lab sign-up (on the course web page) is necessary
- Solutions will be provided

MIT

Term Project

- Investigate a contrasting condition in an ASR experiment
- We will provide different recognizers and domains for you to select from, and will work with you to select a topic
- You choose:
 - Evaluation condition: e.g., phonetic classification, word recognition)
 - Database (e.g., TIMIT, RM, Jupiter, Aurora, ...)
 - Recognizer (e.g., Sphinx, Summit, GMTK, ...)
 - Contrasting condition (e.g., signal representation, acoustic model, language model)
- Requirements:
 - Proposal
 - Experiments (the bulk of the work)
 - Write-up
 - Presentation on extended last day of class

References (on reserve at Barker)

- Huang, Acero, & Hon, Spoken Language Processing, Prentice-Hall, 2001.
- Jelinek, *Statistical Methods for Speech Recognition*, MIT Press, 1997.
- Rabiner & Juang, *Fundamentals of Speech Recognition*, Prentice-Hall, 1983.
- Duda, Hart, & Stork, *Pattern Classification*, Wiley & Sons, 2001.
- Stevens, Acoustic Phonetics, MIT Press, 1998.