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Hidden Markov Modelling

e Introduction

e Problem formulation

e Forward-Backward algorithm

e Viterbi search

e Baum-Welch parameter estimation

e Other considerations
— Multiple observation sequences
— Phone-based models for continuous speech recognition
— Continuous density HMMs

— Implementation issues
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Information Theoretic Approach to ASR

Speech Generation Speech Recognition
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Recognition is achieved by maximizing the probability of the
linguistic string, W, given the acoustic evidence, A, i.e., choose the
linguistic sequence W such that

P(W|A) = max P(W|A)
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Information Theoretic Approach to ASR

e From Bayes rule:
P(A|IW)P(W)

P(A)

P(W|A) =

e Hidden Markov modelling (HMM) deals with the quantity P(A|W)

e Change in notation:

A 0,
w
P(A|W)

LU

A
P(O|A)
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HMM: An Example

e Consider 3 mugs, each with mixtures of state stones, 1 and 2
e The fractions for the i"" mug are a;; and a;», and a;; +aj> =1
e Consider 2 urns, each with mixtures of black and white balls
e The fractions for the i'" urn are b;(B) and b;j(W); bi(B) + bi(W) = 1
e The parameter vector for this model is:
A ={do1, do2, d11, A12, A21, d22, b1(B), b1(W), b2(B), b2 (W)}
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HMM: An Example (cont’d)
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Observation Sequence: O={B,W,B, W, W, B}
State Sequence: Q ={1, 2 1 2,1}

Goal: Given the model A and the observation sequence O,
how can the underlying state sequence Q be determined?
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Elements of a Discrete Hidden Markov Model

e N: number of states in the model
— states, s =1{S1, S2,..., SN}
— state attime t,g; € s

e M: number of observation symbols (i.e., discrete observations)
— observation symbols, v=1{vi, vo,..., V;}
— observation at time t, o; € v

e A={a,;j}: state transition probability distribution
- aij =P(qts1 =5jlqr =5i), 1 <i,j <N

e B={b;(k)}: observation symbol probability distribution in state j
—b(k) P(vi attlgr=sj), 1<j<N,1<k<M

e 77T = {17;}: initial state distribution
- mi=P(g1=5i), 1 <IN

Notationally, an HMM is typically written as: A ={A, B, 1t}
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HMM: An Example (cont’d)

For our simple example:

_ | an ar | bi(B) bi(W)
T = tdo1, doz}, A‘[am 27 ] anc B_[bz(B) b2<w>]

State Diagram

2-State 3-state

a1 (2 %)

a2

1
{b1(B), by (W)}  {ba(B), bo(W)}
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Generation of HMM Observations

. Choose an initial state, g; = s;, based on the initial state
distribution, 1T

2. Fort=1toT:

e Choose 0 = v according to the symbol probability distribution
in state s;, bij(k)

e Transition to a new state g;41 = §; according to the state
transition probability distribution for state s;, a;;

3. Increment t by 1, return to step 2 if t < T; else, terminate

apj i
- q1—> q2 —- 4 4w w om e qT
b; (K)
o} 0, Ot
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Representing State Diagram by Trellis

~ 7’
~ o _ -

The dashed line represents a null transition, where no observation
symbol is generated
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Three Basic HMM Problems

1. Scoring: Given an observation sequence O =1{01,0,...,07}and a
model A ={A, B, 1t}, how do we compute P(O | A), the probability
of the observation sequence?

==> The Forward-Backward Algorithm

2. Matching: Given an observation sequence O ={01, 02, ..., 01}, how
do we choose a state sequence Q =141, 9>, ...,q4r} which is
optimum in some sense?

==> The Viterbi Algorithm

3. Training: How do we adjust the model parameters A ={A, B, 1t} to
maximize P(O | A)?
==> The Baum-Welch Re-estimation Procedures
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Computation of P(O|\)

P(OIA) = ¥ P(O, QIA)
allQ

P(O,QJ|A) =P(0|Q,A)P(Q|A)
e Consider the fixed state sequence: Q =gi1g>...49T

P(O|Q,A) = bql(ol)bqg(OZ)---qu(OT)

P(Q|A) =114,44,9,9g,q5---Ag7_ g7

Therefore:

P(OM) = Z 7T671b671(01)a671672b672(02)'" aCIT—MTbGIT (OT)
d1,92,.-,qT

e Calculation required = 2T - N! (there are N! such sequences)
ForN=5T=100=2-100 - 5199 = 1072 computations!
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The Forward Algorithm

e Let us define the forward variable, x(i), as the probability of the
partial observation sequence up to time t and state s; at time ¢,
given the model, i.e.

X¢(i) = P(0102...0¢, qr = Si|A)

e It can easily be shown that:

x1(i) = 1tibi(07), 1<i<N
P(O|A) = ZF”“
e By induction:
N
. . 1<t<T-1
Ke+1 (J) = [Z X (i) aijlbj (0t+1), 1_<j< N
i=1 =J =

e Calculation is on the order of N°T.
For N=5,T=100= 100 - 52 computations, instead of 1072
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Forward Algorithm lllustration
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The Backward Algorithm

e Similarly, let us define the backward variable, B;(i), as the
probability of the partial observation sequence from time t +1 to
the end, given state s; at time t and the model, i.e.

Bi(i) = P(0¢4+10¢+2...0T|q: = Si, A)

e It can easily be shown that:
Br(i)=1, 1<i<N

and: N
P(OIA) = ) m;bi(01)B1(i)
i=1
e By induction:
N
. . t=T-1,T-2,...,1
Et(l)= Zal_]b_](ot+1)ﬁt+1 (.])J ].<I<N
j=1 -
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Backward Procedure lllustration
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Finding Optimal State Sequences

e One criterion chooses states, g;, which are individually most likely
— This maximizes the expected number of correct states

e Let us define y:(i) as the probability of being in state s; at time ¢,
given the observation sequence and the model, i.e.

N
yi(i)=P(q: =silO,A) > yi)=1, Vvt
=1

e Then the individually most likely state, g¢, at time t is:

q: = argmax y;(i) 1<t<T
1<i<N

e Note that it can be shown that:

X (DB (1)
P(O|A)

ye(i) =

6.345 Automatic Speech Recognition HMM 16



Finding Optimal State Sequences

e The individual optimality criterion has the problem that the
optimum state sequence may not obey state transition constraints

e Another optimality criterion is to choose the state sequence which
maximizes P(Q, O|A); This can be found by the Viterbi algorithm

e Let us define 6:(i) as the highest probability along a single path, at
time t, which accounts for the first t observations, i.e.

or(i)= max P(q1q2...q4¢-1,qt =Si,0102...0¢|A)
a1,92;--qt-1

e By induction: Ot+1(j) = [max o¢(i)a;;jlbj(0r+1)

e To retrieve the state sequence, we must keep track of the state
sequence which gave the best path, at time ¢, to state s;

— We do this in a separate array (i)
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The Viterbi Algorithm

1. Initialization:

2. Recursion:
0:(j) = max[o;-1(Dajjlbj(or), 2<t<T 1<j<N

1<i<N

Ye(j) =argmax[o;—(i)ajjl, 2<t<T 1<j<N

1<i<N

3. Termination:
P* = max[or(i)]

1<i<N
qr =argmax[or(i)]
1<i<N

4. Path (state-sequence) backtracking:

ai = We1(qi)s t=T-1,T-2,...,1

Computation = N°T
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The Viterbi Algorithm: An Example

{aab b}

O=

HMM 19
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The Viterbi Algorithm: An Example (cont’d)

0 a aa aab aabb

S1 1.0 si,,a .4 s;,a .16 s;,,b .016 s;,,b .0016

s;,0 .08 s;,,0 .032 s;,0 .0032 s;, 0 .00032
S> | §1,0 .2 s;,a .21 s;,a .084 s;,,b .0144 s;,, b .00144
sy, a .04 S»,a .042 s, b .0168 s>, b .00336
s, 0 .021 | 55,0 .0084 | s,,0 .00168 | 55,0 .000336

S3 S2,0 .02

S»,a .03 S,,a .0315 | s,,b .0294 s», b .00588

0 a a b b

1.0 0.4 0.16 0.016 0.0016
S e >@ >

I

v0.2 0.084 0.0168  0.00336
82 >@

I

Y0.02 0.03 0.0294 \y 0.00588
S, o

0 1 2 3 4
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Matching Using Forward-Backward Algorithm

0 a aa aab aabb

S1 1.0 s;,a .4 s,a .16 s;,,b .016 s;,,b .0016

s;,0 .08 s1,0  .032 s;,0 .0032 | s;,0 .00032
s> | §1,0 .2 s,a .21 s;,a .084 si,b .0144 | s;,b .00144
s»,a .04 s>,a .066 so,b .0364 | s, b .0108
s>,0 .033 | 55,0 .0182 | 55,0 .0054 | s,,0 .001256

S3 S2,0 .02
s»,a .03 s»,a .0495 | so, b .0637 | s,,b .0189
0 a a b b
1.0 0.4 0.16 0.016 0.0016
S 2 >9 >

V0.2 $33 \\P.182  P.0540 $.01256

S, > > >@
| | | |
Y0.02 N\\9.063 NP.0677 \\.0691 \§ $.020156
s, ® )
0 1 2 3 4

6.345 Automatic Speech Recognition HMM 21



Baum-Welch Re-estimation

e Baum-Welch re-estimation uses EM to determine ML parameters

e Define &:(i,j) as the probability of being in state s; at time t and
state s; at time t + 1, given the model and observation sequence

Et(l,J) = P(Qt = §j, Qt+1 = SJlol A)

e Then: L |
gt(i,j) _ O(t(l)alJIIZJ((gll‘;;)ﬁHl(])

N
ye(i) = > &(i,J)
Jj=1

e Summing y¢(i) and &:(i, j), we get:

T-1
Z yi(I) = expected number of transitions from s;
t=1

T-1
Y &(i,j)= expected number of transitions from s; to s;
t=1
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Baum-Welch Re-estimation Procedures
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Baum-Welch Re-estimation Formulas
T = expected number of times in state s; att =1

= y1(i)

_ expected number of transitions from state s; to s;
expected number of transitions from state s;

T-1
> Eili,J)
t=1

T-1

A

t=1

: expected number of times in state s; with symbol v
expected number of times in state s;

T
Z Yt()

o=V

T
Z Yt()
t=1
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Baum-Welch Re-estimation Formulas

e If A = (A, B, 1) is the initial model, and A = (A, B, 17) is the
re-estimated model. Then it can be proved that either:

1. The initial model, A, defines a critical point of the likelihood
function, in which case A = A, or

2. Model A is more likely than A in the sense that P(O|A) > P(OIA),
i.e., we have found a new model A from which the observation
sequence is more likely to have been produced.

e Thus we can improve the probability of O being observed from
the model if we iteratively use A in place of A and repeat the

re-estimation until some limiting point is reached. The resulting
model is called the maximum likelihood HMM.
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Multiple Observation Sequences

e Speech recognition typically uses left-to-right HMMs. These HMMs
can not be trained using a single observation sequence, because
only a small number of observations are available to train each
state. To obtain reliable estimates of model parameters, one must
use multiple observation sequences. In this case, the
re-estimation procedure needs to be modified.

e Let us denote the set of K observation sequences as
o={0",0%,...,0%}
where 0% = {0{, 0%, ..., 0%} is the k-th observation sequence.

e Assume that the observations sequences are mutually
independent, we want to estimate the parameters so as to
maximize

N

P(O|A)=[]P(O% |A)=
k=1

e
BS)
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Multiple Observation Sequences (cont’d)

e Since the re-estimation formulas are based on frequency of
occurrence of various events, we can modify them by adding up
the individual frequencies of occurrence for each sequence

K Tg—1 P K 1 Tr—1 L
Z Z & (1,J)) Zp_ x¢ (D)aijb; 0t+1)[3t+1(1
.. = k=lt=1 _ k=1 k =1
Y K Ty-1 K 1 Ticl
>3 vk S o S kBl
k=1 t=1 k=1" kK =1
K Tk X K 1 Tk Lo v
> > v Yo D «BE)
k=1 (I£)=1 =11k (I£)=1
? _ O =Vg . op "=y
bj6) =——+ - %
PRV > 5> i (DBL()
k=1t=1 k=1" K¢=1
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Phone-based HMMs

e Word-based HMMs are appropriate for small vocabulary speech
recognition. For large vocabulary ASR, sub-word-based (e.g.,
phone-based) models are more appropriate.

WORD MODEL

(a)
- Sz »(SNP-———>

SUB-WORD UNIT
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Phone-based HMMs (cont’d)

e The phone models can have many states, and words are made up
from a concatenation of phone models.

6.345 Automatic Speech Recognition
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Continuous Density Hidden Markov Models

e A continuous density HMM replaces the discrete observation
probabilities, bj(k), by a continuous PDF b;(x)

e A common practice is to represent bj(x) as a mixture of Gaussians:

M
bj(x) = Z CikN[X, tjk, Zjk] 1<j<N
k=1

where cjk is the mixture weight

M
k20 (1<j<N,1<k<M,and ) cjx=1,1<j<N),
k=1
N is the normal density, and
Ujk and Xji are the mean vector and covariance matrix

associated with state j and mixture k.
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Acoustic Modelling Variations

e Semi-continuous HMMs first compute a VQ codebook of size M
— The VQ codebook is then modelled as a family of Gaussian PDFs

— Each codeword is represented by a Gaussian PDF, and may be
used together with others to model the acoustic vectors

— From the CD-HMM viewpoint, this is equivalent to using the
same set of M mixtures to model all the states

— It is therefore often referred to as a Tied Mixture HMM

e All three methods have been used in many speech recognition
tasks, with varying outcomes

e For large-vocabulary, continuous speech recognition with
sufficient amount (i.e., tens of hours) of training data, CD-HMM
systems currently yield the best performance, but with
considerable increase in computation
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Implementation Issues

e Scaling: to prevent underflow

e Segmental K-means Training: to train observation probabilities by
first performing Viterbi alignment

e Initial estimates of A: to provide robust models

e Pruning: to reduce search computation
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