
Hidden Markov Modelling 

• Introduction 

• Problem formulation 

• Forward-Backward algorithm 

• Viterbi search 

• Baum-Welch parameter estimation 

• Other considerations 

– Multiple observation sequences 

– Phone-based models for continuous speech recognition 

– Continuous density HMMs 

– Implementation issues 
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Information Theoretic Approach to ASR 
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Recognition is achieved by maximizing the probability of the 
linguistic string, W , given the acoustic evidence, A, i.e., choose the 

ˆlinguistic sequence W such that 

P(Ŵ |A) = m 
W 
ax P(W |A) 
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Information Theoretic Approach to ASR 

• From Bayes rule: 

P(W |A) =  
P(A|W )P(W ) 

P(A) 

• Hidden Markov modelling (HMM) deals with the quantity P(A|W ) 

• Change in notation: 

A → O 
W → λ 

P(A|W ) → P(O|λ) 
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HMM: An Example 
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• Consider 3 mugs, each with mixtures of state stones, 1 and 2 

• The fractions for the ith mug are ai1 and ai2, and ai1 + ai2 = 1  

• Consider 2 urns, each with mixtures of black and white balls 

• The fractions for the ith urn are bi (B) and bi (W ); bi (B) +  bi (W ) = 1  

•	 The parameter vector for this model is: 

λ = {a01, a02, a11, a12, a21, a22, b1(B), b1(W ), b2(B), b2(W )} 
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HMM: An Example (cont’d) 
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Observation Sequence: O = {B,W, B,W,W, B}
State Sequence: Q = {1, 1, 2, 1, 2, 1} 

Goal: Given the model λ and the observation sequence O, 
how can the underlying state sequence Q be determined? 
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Elements of a Discrete Hidden Markov Model


• N : number of states in the model 
– states, s = {s1, s2, . . . , sN }
– state at time t, qt ∈ s 

•	M: number of observation symbols (i.e., discrete observations) 
– observation symbols, v = {v1, v2, . . . , vM }
– observation at time t, ot ∈ v 

• A = {aij }: state transition probability distribution 
– aij = P(qt+1 = sj |qt = si ), 1 ≤ i, j ≤ N 

• B = {bj (k)}: observation symbol probability distribution in state j 
– bj (k) =  P(vk at t|qt = sj ), 1 ≤ j ≤ N,  1 ≤ k ≤ M 

• π = {πi }: initial state distribution 
– πi = P(q1 = si ), 1 ≤ i ≤ N 

Notationally, an HMM is typically written as: λ = {A, B, π} 
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HMM: An Example (cont’d) 

For our simple example: 

π = {a01, a02}, A = 
a11 a12 , and B = 

b1(B) b1(W ) 
a21 a22 b2(B) b2(W ) 

State Diagram 

2-state 3-state 

1 2 

a11 a12 
a22 

1 3 2 

a21 

{b1(B), b1(W)} {b2(B), b2(W)} 
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Generation of HMM Observations 

1.	 Choose an initial state, q1 = si , based on the initial state 
distribution, π 

2. For t = 1  to T : 
•	 Choose ot = vk according to the symbol probability distribution 

in state si, bi (k) 
•	 Transition to a new state qt+1 = sj according to the state 

transition probability distribution for state si, aij 

3. Increment t by 1, return to step 2  if t ≤ T ; else, terminate 

a0i aij 
q1 q2 

. . . . . 

bi (k) 

o1 o2 

qT 

oT 
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Representing State Diagram by Trellis 

1 2 3 

s1 

s2 

s3 

0 1 2 3 4 

The dashed line represents a null transition, where no observation 
symbol is generated 
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Three Basic HMM Problems 

1.	 Scoring: Given an observation sequence O�= {o1, o2, ..., oT } and a 
model λ = {A, B, π}, how do we compute P(O�| λ), the probability 
of the observation sequence? 

==> The Forward-Backward Algorithm 

2.	 Matching: Given an observation sequence O�= {o1, o2, ..., oT }, how 
do we choose a state sequence Q�= {q1, q2, ..., qT } which is 
optimum in some sense? 

==> The Viterbi Algorithm 

3. Training: How do we adjust the model parameters λ = {A, B,π} to 
maximize P(O�| λ)? 

==> The Baum-Welch Re-estimation Procedures 
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Computation of P(O|λ) 

P(O|λ) =  P(O, Q�|λ) 
allQ�

P(O, Q�|λ) =  P(O|Q�, λ)P(Q�|λ)


• Consider the fixed�state sequence: Q�= q1q2 . . . qT 

P(O|Q�, λ) =  bq1(o1)bq2(o2) . . . bqT (oT ) 

P(Q�|λ) =  πq1 aq1q2 aq2q3 . . . aqT −1 qT 

Therefore: 

P(O|λ) = 

q1,q2 ,...,qT


πq1 bq1(o1)aq1 q2 bq2(o2) . . . aqT −1 qT bqT (oT )


• Calculation required ≈ 2T · NT (there are NT such sequences) 
For N = 5, T  = 100 ⇒ 2 · 100 · 5100 ≈ 1072 computations! 
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The Forward Algorithm 

•	 Let us define the forward variable, αt (i), as the probability of the 
partial observation sequence up to time t and�state si at time t, 
given the model, i.e. 

αt (i) =  P(o1o2 . . . ot, qt = si |λ) 

• It can easily be shown that: 

α1(i) =  πibi (o1), 1 ≤ i ≤ N 

N 

P(O|λ) =  αT (i) 

• By induction: i=1 

N 1 ≤ t ≤ T − 1
αt+1 (j) = [  αt (i) aij ]bj (ot+1), 1 ≤ j ≤ N

i=1 

•	 Calculation is on the order of N 2T . 
For N = 5, T  = 100 ⇒ 100 · 52 computations, instead of 1072 
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Forward Algorithm Illustration 

s1 

si 

sj 

sN 

1 t t+1 T 

a1j 

aNj 

ajj 

aij 

αt(i) 

αt+1(j) 
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The Backward Algorithm 

•	 Similarly, let us define the backward variable, βt(i), as the 
probability of the partial observation sequence from time t + 1  to 
the end, given state si at time t and the model, i.e. 

βt(i) =  P(ot+1ot+2 . . . oT |qt = si, λ) 

• It can easily be shown that: 

and: 

• By induction: 
N� 

βt (i) = 
j=1 

βT (i) = 1, 1 ≤ i ≤ N 

N� 
P(O|λ) =  πibi(o1)β1(i) 

i=1 

t = T − 1, T  − 2, . . . ,1 
aijbj (ot+1)βt+1 (j), 1 ≤ i ≤ N 
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Backward Procedure Illustration 

s1 

si 

sj 

sN 

1 t t+1 T 

ai1 

aiN 

aij 

aii βt(i) 

βt+1(j) 
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Finding Optimal State Sequences 

• One criterion chooses states, qt , which are individually most likely 

– This maximizes the expected number of correct states 

•	 Let us define γt (i)�as the probability of being in state si at time t, 
given the observation sequence and the model, i.e. 

γt (i) = �P(qt =�si |O, λ)�
i=1�

γt (i) = 1, ∀t


•	 Then the individually most likely state, qt , at time t is: 

qt =�argmax�γt (i) 1�≤ t ≤ T

1≤i≤N


• Note that it can be shown that: 

γt (i) = �
αt (i)βt (i)�
P(O|λ)�
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Finding Optimal State Sequences 

•	 The individual optimality criterion has the problem that the 
optimum state sequence may not obey state transition constraints 

•	 Another optimality criterion is to choose the state sequence which 
maximizes P(Q , O|λ); This can be found by the Viterbi algorithm 

•	 Let us define δt (i)�as the highest probability along a single path, at 
time t, which accounts for the first t observations, i.e. 

δt (i) = � max� P(q1q2�. . . qt−1, qt =�si, o1o2�. . . ot |λ)
q1,q2,...,qt−1�

• By induction: δt+1(j) = [max�δt (i)aij ]bj (ot+1)�

•	 To retrieve the state sequence, we must keep track of the state 
sequence which gave the best path, at time t, to state si 

– We do this in a separate array ψt (i)�
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The Viterbi Algorithm 

1. Initialization: 

δ1(i) = �πibi (o1), 1�≤ i ≤ N 
ψ1(i) = 0�

2. Recursion: 

δt (j) = �max�
1≤i≤N

[δt−1(i)aij ]bj (ot ), 2�≤ t ≤ T 1�≤ j ≤ N 

ψt (j)� =�argmax[δt−1(i)aij ], 2�≤ t ≤ T 1�≤ j ≤ N 
1≤i≤N 

3. Termination: 
P∗ = max�

1≤i≤N 
[δT (i)]�

q∗ =�argmax[δT (i)]�
1≤i≤N


4.	 Path (state-sequence) backtracking: 

qt 
∗ =�ψt+1(qt 

∗ 
+1), t =�T − 1, T  − 2, . . . ,  1�

Computation ≈ N 2T 
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The Viterbi Algorithm: An Example 
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The Viterbi Algorithm: An Example (cont’d) 
0 a aa aab aabb 

s1 1.0 s1, a  .4 s1 , a  .16 s1 , b  .016 s1, b  .0016 

s1, 0 .08 s1 , 0 .032 s1, 0 .0032 s1, 0 .00032 
s2 s1, 0 .2 s1, a  .21 s1 , a  .084 s1, b  .0144 s1, b  .00144 

s2, a  .04 s2 , a  .042 s2, b  .0168 s2, b  .00336 
s2, 0 .021 s2, 0 .0084 s2, 0 .00168 s2, 0 .000336 

s3 s2, 0 .02 
s2, a  .03 s2 , a  .0315 s2, b  .0294 s2, b  .00588 

0 a a b b 

1.0 0.4 0.16 0.016 0.0016 s1 

s2 

s3 

0 1 2 3 4 

0.00588 0.0294 0.0315 0.03 0.02 

0.00336 0.0168 0.084 0.21 0.2 
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Matching Using Forward-Backward Algorithm 

0 a aa aab aabb 

s1 1.0 s1 , a  .4 s1, a  .16 s1, b  .016 s1, b  .0016 

s1, 0 .08 s1, 0 .032 s1, 0 .0032 s1, 0 .00032 
s2 s1, 0 .2 s1 , a  .21 s1, a  .084 s1, b  .0144 s1, b  .00144 

s2, a  .04 s2, a  .066 s2, b  .0364 s2, b  .0108 
s2, 0 .033 s2, 0 .0182 s2, 0 .0054 s2, 0 .001256 

s3 s2, 0 .02 
s2 , a  .03 s2, a  .0495 s2, b  .0637 s2, b  .0189 

s1 

s2 

s3 

0 a a b b 

1.0 0.4 0.16 0.016 0.0016 

0.01256 0.0540 0.182 0.33 0.2 

0.020156 0.0691 0.0677 0.063 0.02 

0 1 2 3 4 
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Baum-Welch Re-estimation 

• Baum-Welch re-estimation uses EM to determine ML parameters 

•	 Define ξt(i, j) as the probability of being in state si at time t and 
state sj at time t + 1, given the model and observation sequence 

ξt(i, j) =  P(qt = si, qt+1 = sj |O, λ) 

• Then: 
ξt(i, j) =  

αt(i)aijbj(ot+1)βt+1(j) 
P(O|λ) 

N 

γt(i) =  ξt(i, j) 
j=1 

• Summing γt(i) and ξt(i, j), we get: 
T −1 

γt(i) =  expected number of transitions from si 
t=1 

T −1 

ξt(i, j) =  expected number of transitions from si to sj 
t=1 
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Baum-Welch Re-estimation Procedures 

s1 

si 

sj 

sN 

1 t-1 t t+1 t+2 T 

αt(i) 

βt+1(j) 

aij 
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Baum-Welch Re-estimation Formulas 
π =�expected number of times in state si at t = 1 �

=�γ1(i)�

aij =�
expected number of transitions from state si to sj

expected number of transitions from state si 
T−1�

ξt (i, j)�
t=1=�
T−1�

γt (i)�
t=1�

bj (k) = �
expected number of times in state sj with symbol vk 

expected number of times in state sj 

γt (j)�
t=1�
ot =vk=�

γt (j)�
t=1�
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Baum-Welch Re-estimation Formulas 

A, ̄  π)�is the•	 If λ = (A, B, π)�is the initial model, and λ = (¯ B, ¯ 
re-estimated model. Then it can be proved that either: 

1.	 The initial model, λ, defines a critical point of the likelihood 
function, in which case λ =�λ, or 

2. Model λ is more likely than λ in the sense that P(O|λ̄)�> P(O|λ), 
i.e., we have found a new model λ from which the observation 
sequence is more likely to have been produced. 

•	 Thus we can improve the probability of O being observed from 
the model if we iteratively use λ in place of λ and repeat the 
re-estimation until some limiting point is reached. The resulting 
model is called the maximum likelihood HMM. 
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Multiple Observation Sequences 

•	 Speech recognition typically uses left-to-right HMMs. These HMMs 
can not be trained using a single observation sequence, because 
only a small number of observations are available to train each 
state. To obtain reliable estimates of model parameters, one must 
use multiple observation sequences. In this case, the 
re-estimation procedure needs to be modified. 

• Let us denote the set of K observation sequences as 

O =�{O(1), O(2), . . . ,  O(K)} 
1 2� Tk 

} is the k-th observation sequence.where O(k) =�{o(k)
, o

(k)
, . . . , o

(k)�

•	 Assume that the observations sequences are mutually 
independent, we want to estimate the parameters so as to 
maximize 

P(O | λ) = � P(O(k)� | λ) = � Pk 
k=1� k=1�
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Multiple Observation Sequences (cont’d) 

•	 Since the re-estimation formulas are based on frequency of 
occurrence of various events, we can modify them by adding up 
the individual frequencies of occurrence for each sequence 

K Tk−1� K 1�Tk−1�

ξt
k(i, j)�

k=1�
Pk t=1�

αt
k(i)aijbj (o

(k)�
t+1)βkt+1(j)�

k=1�t=1� =aij =�
K Tk−1� K 1�Tk−1�

γt
k(i)� αt

k(i)βkt (i)�
k=1�t=1� k=1�

Pk t=1�

K Tk K 1� � 
γt
k(j)�

k=1�
Pk t=1�

αt
k(i)βkt (i)�

k=1� t=1�

ot 
(k)

=v� ot 
(k)

=v�
bj (�) = �

K Tk 
=�

K Tk 

γt
k(j)�

k=1�
Pk t=1�

1�� 
αt
k(i)βkt (i)�

k=1t=1�
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Phone-based HMMs 

•	 Word-based HMMs are appropriate for small vocabulary speech 
recognition. For large vocabulary ASR, sub-word-based (e.g., 
phone-based) models are more appropriate. 
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Phone-based HMMs (cont’d) 

•	 The phone models can have many states, and words are made up 
from a concatenation of phone models. 
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Continuous Density Hidden Markov Models 

•	 A continuous density HMM replaces the discrete observation 
probabilities, bj (k), by a continuous PDF bj (x) 

• A common practice is to represent bj (x) as a mixture of Gaussians: 

M 

bj (x) =  cjkN[x, µjk, Σjk] 1 ≤ j ≤ N 
k=1 

where cjk is the mixture weight 
M 

cjk ≥ 0 (1 ≤ j ≤ N,  1 ≤ k ≤ M , and cjk = 1, 1 ≤ j ≤ N ), 
k=1 

N is the normal density, and

µjk and Σjk are the mean vector and covariance matrix

associated with state j and mixture k.
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Acoustic Modelling Variations 

• Semi-continuous HMMs first compute a VQ codebook of size M 

– The VQ codebook is then modelled as a family of Gaussian PDFs 

–	 Each codeword is represented by a Gaussian PDF, and may be 
used together with others to model the acoustic vectors 

–	 From the CD-HMM viewpoint, this is equivalent to using the 
same set of M mixtures to model all the states 

– It is therefore often referred to as a Tied Mixture HMM 

•	 All three methods have been used in many speech recognition 
tasks, with varying outcomes 

•	 For large-vocabulary, continuous speech recognition with 
sufficient amount (i.e., tens of hours) of training data, CD-HMM 
systems currently yield the best performance, but with 
considerable increase in computation 
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Implementation Issues 

• Scaling: to prevent underflow 

•	 Segmental K-means Training: to train observation probabilities by 
first performing Viterbi alignment 

• Initial estimates of λ: to provide robust models 

• Pruning: to reduce search computation 
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