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Graphical models for ASR

• HMMs (and most other common ASR models) have some 
drawbacks
– Strong independence assumptions
– Single state variable per time frame

• May want to model more complex structure
– Multiple processes (audio + video, speech + noise, multiple 

streams of acoustic features, articulatory features)
– Dependencies between these processes or between acoustic 

observations

• Graphical models provide:
– General algorithms for large class of models

⇒ No need to write new code for each new model

– A “language” with which to talk about statistical models
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Outline

• First half – intro to GMs
– Independence & conditional independence
– Bayesian networks (BNs)

* Definition
* Main problems

– Graphical models in general

• Second half – dynamic Bayesian networks (DBNs) for speech 
recognition
– Dynamic Bayesian networks -- HMMs and beyond
– Implementation of ASR decoding/training using DBNs
– More complex DBNs for recognition
– GMTK
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(Statistical) independence

X Y• Definition:  Given the random variables       and     ,

)()|( xpyxp =YX ⊥ ⇔

c c

)()(),( ypxpyxp = )()|( ypxyp =⇔



Graphical models for ASR 56.345 Automatic Speech Recognition

(Statistical) conditional independence

X Y Z• Definition:  Given the random variables      ,    ,  and     ,
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Is height independent of hair length?
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Is height independent of hair length?

• Generally, no
• If gender known, yes
• This is the “common cause” scenario
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Is the future independent of the past 
(in a Markov process)?

• Generally, no
• If present state is known, then yes
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Are burglaries independent of earthquakes?

• Generally, yes
• If alarm state known, no
• Explaining-away effect:  the earthquake “explains away” the 

burglary
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Are alien abductions independent of 
daylight savings time?

• Generally, yes
• If Jim doesn’t show up for lecture, no
• Again, explaining-away effect
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Is tongue height independent of lip rounding?

• Generally, yes
• If F1 is known, no
• Yet again, explaining-away effect...
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More explaining away...
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Bayesian networks

• The preceding slides are examples of simple Bayesian networks

• Definition:
– Directed acyclic graph (DAG) with a one-to-one correspondence 

between nodes (vertices) and variables X1, X2, ... , XN

– Each node Xi with parents pa(Xi) is associated with the “local” 
probability function pXi|pa(Xi)

– The joint probability of all of the variables is given by the product 
of the local probabilities, i.e. p(xi, ... , xN) = Π p(xi|pa(xi))

B
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A

Cp(a)

p(b|a)

p(c|b)

p(d|b,c)

⇒ p(a,b,c,d) = 
p(a) p(b|a) p(c|b) p(d|b,c)

• A given BN represents a family of probability distributions
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Bayesian networks, cont’d

• Missing edges in the graph correspond to independence 
assumptions

• Joint probability can always be factored according to the 
chain rule:

p(a,b,c,d) = p(a) p(b|a) p(c|a,b) p(d|a,b,c)

• But by making some independence assumptions, we get a
sparse factorization, i.e. one with fewer parameters

p(a,b,c,d) = p(a) p(b|a) p(c|b) p(d|b,c)
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Medical example

lung 
cancer

smoker genes

parent 
smokerprofession

• Things we may want to know:
– What independence assumptions does 

this model encode?
– What is p(lung cancer | profession) ?  

p(smoker | parent smoker, genes) ?
– Given some of the variables, what are 

the most likely values of others?
– How do we estimate the local 

probabilities from data?
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Determining independencies from a graph
• There are several ways...
• Bayes-ball algorithm (“Bayes-Ball:  The Rational Pastime”, 

Schachter 1998)
– Ball bouncing around graph according to a set of rules
– Two nodes are independent given a set of observed nodes if a 

ball can’t get from one to the other
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Bayes-ball, cont’d

• Boundary conditions:
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Bayes-ball in medical example

lung 
cancer

smoker genes

parent 
smokerprofession

• According to this model:
– Are a person’s genes independent of whether they have a parent 

who smokes?  What about if we know the person has lung 
cancer?

– Is lung cancer independent of profession given that the person is 
a smoker?

– (Do the answers make sense?)



Graphical models for ASR 196.345 Automatic Speech Recognition

Inference

• Definition:
– Computation of the probability of one subset of the variables 

given another subset

• Inference is a subroutine of:
– Viterbi decoding

q* = argmaxq p(q|obs)

– Maximum-likelihood estimation of the parameters of the local 
probabilities

λ* = argmax λ p(obs| λ)
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Graphical models (GMs)

• In general, GMs represent families of probability distributions 
via graphs
– directed, e.g. Bayesian networks
– undirected, e.g. Markov random fields
– combination, e.g. chain graphs

• To describe a particular distribution with a GM, we need to 
specify:
– Semantics:  Bayesian network, Markov random field, ...
– Structure:  the graph itself
– Implementation:  the form of the local functions (Gaussian, table, ...)
– Parameters of local functions (means, covariances, table entries...)

• Not all types of GMs can represent all sets of independence 
properties!
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Example of undirected graphical models:
Markov random fields

• Definition:
– Undirected graph
– Local function (“potential”) defined on each maximal clique
– Joint probability given by normalized product of potentials

• Independence properties can be deduced via simple graph 
separation
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Dynamic Bayesian networks (DBNs)

• BNs consisting of a structure that repeats an indefinite (or 
dynamic) number of times
– Useful for modeling time series (e.g. speech)
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DBN representation of n-gram language models

• Bigram:

Wi+1WiWi-1
. . .                                                       . . .

• Trigram:

Wi+1WiWi-1. . .                                                       . . .
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Representing an HMM as a DBN

1 2 3

obs obs obs

=  state

=  allowed transition

=  variable

=  allowed dependency
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Casting HMM-based ASR as a GM problem

Qi

obsi

. . .. . .
Qi-1

obsi-1

Qi+1

obsi+1

• Viterbi decoding finding the most probable settings for all  
qi given the acoustic observations  {obsi}

• Baum-Welch training finding the most likely settings for 
the parameters of P(qi|qi-1) and  P(obsi | qi)

• Both are special cases of the standard GM algorithms for 
Viterbi and EM training
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Variations

• Input-output HMMs

Qi
. . .. . . Qi-1 Qi+1

Xi-1 Xi Xi+1

Xi-1 Xi Xi+1

• Factorial HMMs

Qi
. . .. . . Qi-1 Qi+1

Xi-1 Xi Xi+1

RiRi-1 Ri+1
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Switching parents

• Definition:
– A variable X is a switching parent of variable Y if the value of X 

determines the parents and/or implementation of Y

• Example:

B

D

A

C
A=0 ⇒ D has parent B with Gaussian distribution
A=1 ⇒ D has parent C with Gaussian distribution
A=2 ⇒ D has parent C with mixture Gaussian distribution
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HMM-based recognition with a DBN

word

word transition

word position

state transition

phone state

observation

variable name

end of utterance

frame  0 frame  i last frame

• What language model does this GM implement?
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Training and testing DBNs

• Why do we need different structures for training testing?  
Isn’t training just the same as testing but with more of the 
variables observed?

• Not always!
– Often, during training we have only partial information about 

some of the variables, e.g. the word sequence but not which 
frame goes with which word
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More complex GM models for recognition

• HMM + auxiliary variables (Zweig 
1998, Stephenson 2001)
– Noise clustering
– Speaker clustering
– Dependence on pitch, speaking rate, 

etc.

Q

obs

Q

obs

aux

Q

obs

a1 a2 aN. . .

• Articulatory/feature-based modeling

• Multi-rate modeling, audio-visual speech recognition (Nefian et al. 
2002)



Graphical models for ASR 316.345 Automatic Speech Recognition

Modeling inter-observation dependencies:
Buried Markov models (Bilmes 1999)

• First note that observation variable is actually a vector of 
acoustic observations (e.g. MFCCs)

obs

Qi+1QiQi-1

• Consider adding dependencies between observations
• Add only those that are discriminative with respect to classifying 

the current state/phone/word
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Feature-based modeling

• Phone-based view: Brain:
Give me a [θ]!

Lips, tongue, velum, glottis:
Right on it, sir!

Lips, tongue, velum, glottis:
Right on it, sir!

Lips, tongue, velum, glottis:
Right on it, sir!

Lips, tongue, velum, glottis:
Right on it, sir!

• (Articulatory) feature-based 
view:

Tongue:
Umm…yeah, OK.

Lips:
Huh?

Brain:
Give me a [θ]!

Velum, glottis:
Right on it, sir !
Velum, glottis:
Right on it, sir !
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A feature-based DBN for ASR
frame i+1frame  i

phone 
state

A1 A2 AN. . .

O

phone 
state

A1 A2 AN. . .

Op(o|a1, ... , aN)
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GMTK:  Graphical Modeling Toolkit 
(J. Bilmes and G. Zweig, ICASSP 2002)

• Toolkit for specifying and computing with dynamic 
Bayesian networks

• Models are specified via:
– Structure file: defines variables, dependencies, and form of 

associated conditional distributions
– Parameter files: specify parameters for each distribution in structure 

file

• Variable distributions can be
– Mixture Gaussians + variants
– Multidimensional probability tables
– Sparse probability tables
– Deterministic (decision trees)

• Provides programs for EM training, Viterbi decoding, and 
various utilities
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Example portion of structure file

variable : phone {
type: discrete hidden cardinality NUM_PHONES;
switchingparents: nil;
conditionalparents: word(0), wordPosition(0) using

DeterministicCPT("wordWordPos2Phone");
}

variable : obs {
type: continuous observed OBSERVATION_RANGE;
switchingparents: nil;
conditionalparents: phone(0) using mixGaussian 

collection(“global”) mapping("phone2MixtureMapping");
}
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Some issues...

• For some structures, exact inference may be 
computationally infeasible ⇒ approximate inference 
algorithms

• Structure is not always known ⇒ structure learning 
algorithms
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