Lecture # 13 Session 2003

A Practical Introduction to Graphical Models and their use in ASR

6.345

Graphical models for ASR

- HMMs (and most other common ASR models) have some drawbacks
 - Strong independence assumptions
 - Single state variable per time frame
- May want to model more complex structure
 - Multiple processes (audio + video, speech + noise, multiple streams of acoustic features, articulatory features)
 - Dependencies between these processes or between acoustic observations
- Graphical models provide:
 - General algorithms for large class of models
 - \Rightarrow No need to write new code for each new model
 - A "language" with which to talk about statistical models

Outline

- First half intro to GMs
 - Independence & conditional independence
 - Bayesian networks (BNs)
 - * Definition
 - * Main problems
 - Graphical models in general
- Second half dynamic Bayesian networks (DBNs) for speech recognition
 - Dynamic Bayesian networks -- HMMs and beyond
 - Implementation of ASR decoding/training using DBNs
 - More complex DBNs for recognition
 - GMTK

(Statistical) independence

• Definition: Given the random variables X and Y,

$$X \perp Y$$
 \Leftrightarrow $p(x \mid y) = p(x)$ \updownarrow \updownarrow \updownarrow $p(x, y) = p(x)p(y)$ \Leftrightarrow $p(y \mid x) = p(y)$

(Statistical) conditional independence

• Definition: Given the random variables X, Y, and Z,

$$\begin{array}{ccc} X \perp Y \mid Z & \Leftrightarrow & p(x \mid y, z) = p(x \mid z) \\ & & & & & \\ & & & & & \\ p(x, y \mid z) = p(x \mid z) p(y \mid z) & \Leftrightarrow & p(y \mid x, z) = p(y \mid z) \end{array}$$

Is height independent of hair length?

Is height independent of hair length?

- Generally, no
- If gender known, yes
- This is the "common cause" scenario

Is the future independent of the past (in a Markov process)?

- Generally, no
- If present state is known, then yes

$$p(q_{i+1} | q_{i-1}) \neq p(q_{i+1}) \qquad Q_{i+1} \not\perp Q_{i-1}$$

$$p(q_{i+1} | q_{i-1}, q_i) = p(q_{i+1} | q_i) \qquad Q_{i+1} \perp Q_{i-1} | Q_i$$

Are burglaries independent of earthquakes?

- Generally, yes
- If alarm state known, no
- Explaining-away effect: the earthquake "explains away" the burglary

Are alien abductions independent of daylight savings time?

- Generally, yes
- If Jim doesn't show up for lecture, no
- Again, explaining-away effect

Is tongue height independent of lip rounding?

- Generally, yes
- If F₁ is known, no
- Yet again, explaining-away effect...

More explaining away...

$$p(c_i | c_j) = p(c_i) \qquad C_i \perp C_j \quad \forall i, j$$

$$p(c_i | c_j, l) \neq p(c_i | l) \qquad C_i \perp C_j \mid L \quad \forall i, j$$

Bayesian networks

- The preceding slides are examples of simple Bayesian networks
- Definition:
 - Directed acyclic graph (DAG) with a one-to-one correspondence between nodes (vertices) and variables $X_1, X_2, ..., X_N$
 - Each node X_i with parents $pa(X_i)$ is associated with the "local" probability function $p_{Xi|pa(Xi)}$
 - The joint probability of all of the variables is given by the product of the local probabilities, i.e. $p(x_i, ..., x_N) = \prod p(x_i | pa(x_i))$

• A given BN represents a *family* of probability distributions

Bayesian networks, cont'd

- Missing edges in the graph correspond to independence assumptions
- Joint probability can always be factored according to the chain rule:

p(a,b,c,d) = p(a) p(b|a) p(c|a,b) p(d|a,b,c)

 But by making some independence assumptions, we get a sparse factorization, i.e. one with fewer parameters

p(a,b,c,d) = p(a) p(b|a) p(c|b) p(d|b,c)

Medical example

- Things we may want to know:
 - What independence assumptions does this model encode?
 - What is p(lung cancer | profession) ? p(smoker | parent smoker, genes) ?
 - Given some of the variables, what are the most likely values of others?
 - How do we estimate the local probabilities from data?

Determining independencies from a graph

- There are several ways...
- Bayes-ball algorithm ("Bayes-Ball: The Rational Pastime", Schachter 1998)
 - Ball bouncing around graph according to a set of rules
 - Two nodes are independent given a set of observed nodes if a ball can't get from one to the other

Bayes-ball, cont'd

• Boundary conditions:

Bayes-ball in medical example

- According to this model:
 - Are a person's genes independent of whether they have a parent who smokes? What about if we know the person has lung cancer?
 - Is lung cancer independent of profession given that the person is a smoker?
 - (Do the answers make sense?)

Inference

- Definition:
 - Computation of the probability of one subset of the variables given another subset
- Inference is a subroutine of:
 - Viterbi decoding

 $q^* = \operatorname{argmax}_q p(q|obs)$

 Maximum-likelihood estimation of the parameters of the local probabilities

 $\lambda^* = \operatorname{argmax}_{\lambda} p(obs \mid \lambda)$

Graphical models (GMs)

- In general, GMs represent families of probability distributions via graphs
 - directed, e.g. Bayesian networks
 - undirected, e.g. Markov random fields
 - combination, e.g. chain graphs
- To describe a *particular* distribution with a GM, we need to specify:
 - **Semantics**: Bayesian network, Markov random field, ...
 - Structure: the graph itself
 - Implementation: the form of the local functions (Gaussian, table, ...)
 - **Parameters** of local functions (means, covariances, table entries...)
- Not all types of GMs can represent all sets of independence properties!

Example of undirected graphical models: Markov random fields

- Definition:
 - Undirected graph
 - Local function ("potential") defined on each maximal clique
 - Joint probability given by normalized product of potentials
- Independence properties can be deduced via simple graph separation

$$p(a,b,c,d) \propto \psi_{A,B}(a,b) \psi_{B,C,D}(b,c,d)$$

Dynamic Bayesian networks (DBNs)

- BNs consisting of a structure that repeats an indefinite (or dynamic) number of times
 - Useful for modeling time series (e.g. speech)

DBN representation of n-gram language models

• Bigram:

• Trigram:

Representing an HMM as a DBN

Casting HMM-based ASR as a GM problem

- Viterbi decoding
 finding the most probable settings for all q_i given the acoustic observations {obs_i}
- Baum-Welch training → finding the most likely settings for the parameters of P(q_i|q_{i-1}) and P(obs_i | q_i)
- Both are special cases of the standard GM algorithms for Viterbi and EM training

Variations

• Input-output HMMs

Factorial HMMs

Switching parents

- Definition:
 - A variable X is a switching parent of variable Y if the value of X determines the parents and/or implementation of Y

• Example:

 $\begin{array}{l} A=0 \Rightarrow D \text{ has parent B with Gaussian distribution} \\ A=1 \Rightarrow D \text{ has parent C with Gaussian distribution} \\ A=2 \Rightarrow D \text{ has parent C with mixture Gaussian distribution} \end{array}$

HMM-based recognition with a DBN

• What language model does this GM implement?

Training and testing DBNs

- Why do we need different structures for training testing? Isn't training just the same as testing but with more of the variables observed?
- Not always!
 - Often, during training we have only *partial* information about some of the variables, e.g. the word sequence but not which frame goes with which word

More complex GM models for recognition

- HMM + auxiliary variables (Zweig 1998, Stephenson 2001)
 - Noise clustering
 - Speaker clustering
 - Dependence on pitch, speaking rate, etc.

Articulatory/feature-based modeling

Multi-rate modeling, audio-visual speech recognition (Nefian et al. 2002)

Modeling inter-observation dependencies: Buried Markov models (Bilmes 1999)

 First note that observation variable is actually a vector of acoustic observations (e.g. MFCCs)

- Consider adding dependencies between observations
- Add only those that are discriminative with respect to classifying the current state/phone/word

Feature-based modeling

Brain: Phone-based view: Give me a $[\theta]!$ Lips, tongue, velum, glottis: **Right on it, sir! Brain**: (Articulatory) feature-based Give me a $[\theta]!$ view: Lips: Huh? Mier Velum, glottis: **Tongue: Right on it, sir !** Umm...yeah, OK.

A feature-based DBN for ASR

GMTK: Graphical Modeling Toolkit (J. Bilmes and G. Zweig, ICASSP 2002)

- Toolkit for specifying and computing with dynamic Bayesian networks
- Models are specified via:
 - Structure file: defines variables, dependencies, and form of associated conditional distributions
 - Parameter files: specify parameters for each distribution in structure file
- Variable distributions can be
 - Mixture Gaussians + variants
 - Multidimensional probability tables
 - Sparse probability tables
 - Deterministic (decision trees)

Provides programs for EM training, Viterbi decoding, and various utilities

Example portion of structure file

```
variable : phone {
    type: discrete hidden cardinality NUM PHONES;
    switchingparents: nil;
    conditionalparents: word(0), wordPosition(0) using
        DeterministicCPT("wordWordPos2Phone");
variable : obs {
    type: continuous observed OBSERVATION RANGE;
    switchingparents: nil;
    conditionalparents: phone(0) using mixGaussian
         collection("global") mapping("phone2MixtureMapping");
```

Some issues...

- For some structures, exact inference may be computationally infeasible ⇒ approximate inference algorithms
- Structure is not always known ⇒ structure learning algorithms

References

- J. Bilmes, "Graphical Models and Automatic Speech Recognition", in *Mathematical Foundations of Speech and Language Processing*, Institute of Mathematical Analysis Volumes in Mathematics Series, Springer-Verlag, 2003.
- G. Zweig, Speech Recognition with Dynamic Bayesian Networks, Ph.D. dissertation, UC Berkeley, 1998.
- J. Bilmes, "What HMMs Can Do", UWEETR-2002-0003, Feb. 2002.