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Designing graph structures for the language 
HMM : Understanding and dealing with the 
complexity introduced by the use of sub-word 
units 



Creating HMMs for word sequences: units


◆ Large vocabulary systems do not use words as units of sound

● Vocabulary consists of tens of thousands of words 

●	 Difficult to find enough examples of every word even in large 
training corpora 

●	 Words not seen during training can never be learned, and never be 
recognized 

◆ Instead, words are broken down into sub-word units 
●	 Many more instances of sub-word units in a corpus than of words, 

HMMs parameters can be better estimated 

●	 Sub-word units may be combined in different ways to form new 
words, which can be recognized 
� Not necessary to see all words in the vocabulary during training 

● usually phonetically motivated and therefore called phones 
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Creating HMMs for word sequences: Context 
independent units 

Example: ����������������������������� ������� 
Word Phones �������������������������������������������� 

Rock R AO K ������������������ 

◆ Every word is expressed as a sequence of sub-word units 

◆ Each sub-word unit is modeled by an HMM 

◆ Word HMMs are constructed by concatenating HMMs of sub-word units 

◆	 Composing word HMMs with context independent units does not increase the 
complexity the language HMM 

HMM for /R/ HMM for /AO/ HMM for /K/ 

Composed HMM for ROCK
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Creating HMMs for word sequences: Word-
internal context dependent units 

Example: ����������������� 

Word Phones  Triphones ���������������������� 
��������������������� 

Rock R AO K R,AO(R,K),K ������������������������ 

◆ Phonemes are coarse units 
●	 When /AO/ is preceded by R and followed by K, it is spectrographically different than when it is 

preceded by /B/ and followed by /L/ 

◆ Triphones are phonetic units in context. 
◆ If triphones were used only inside words, and the units used at word endings were context 

independent, the language HMM complexity is the same as that when all units are context 
independent. 

HMM for /R/ HMM for /AO(R,K)/ HMM for /K/ 

Composed HMM for ROCK
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Creating HMMs for word sequences: Cross-
word context dependent units 

Example: 

Word Phones  Triphones


Rock R AO K R(*,AO), AO(R,K),K(AO, *)


◆ When triphones are used at word boundaries, the HMMs used to compose the word 
become dependent on adjacent words! 

●	 If “Rock” were followed by “STAR S T AA R”, the final triphone for ROCK would be 
K(AO,S) 

●	 If “Rock” were followed by “MUSIC  M Y UW Z I K”, the final triphone in ROCK 
would be K(AO, M) 

HMM for /R(?, AO)/ HMM for /AO(R,K)/ HMM for /K(AO, ?)/ 

???? ???? 

Composed HMM for ROCK
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Building sentence HMMs using sub-word units


Dictionary

Five: F AY V

Four: F OW R

Nine: N AY N

<sil>: SIL

++breath++: +breath+


Listed here are five “words” and their pronunciations in terms of “phones”. Let  
us assume that these are the only words in the current speech to be  
recognized. The recognition vocabulary thus consists of five words. The  
system uses a dictionary as a reference for these mappings. 
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Building sentence HMMs using sub-word units

Using the dictionary as reference, the system first maps each word into 
triphone-based pronunciations. Each triphone further has a characteristic 
label or type, according to where it occurs in the word. Context is not initially 
known for cross-word triphones. 

Five F(*, AY)cross-word V(AY, *)cross-wordAY(F, V)word-internal 

Four F(*, OW)cross-word R(OW, *)cross-wordOW(F, R)word-internal 

Nine N(*, AY)cross-word N(AY, *)cross-wordAY(N, N)word-internal 

<sil> 

Each triphone is modeled by an HMM 
++Breath++ 

SIL 

+breath+ Silence is modeled by an HMM 

filler phone is modeled by an HMM 
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Building the triphone-based UNIGRAM 
sentence HMM 

Lexicon 

Four 
Five 
Nine 
<sil> 
++Breath++ 

HMM for “Four”. 
This is composed of 8 HMMs. 

A triphone is a single phone with context INFORMATION. It is not a literal sequence of 3 phones. 

= F 

= OW 

= R 

= AY 

= V 

= N 

= SIL 

= +breath+ 

Each triple-box represents a triphone. Each triphone 
model is actually a left-to-right HMM (could have any 
number of states. Each state is a senone.) 

Expand the word Four 
• All last phones (except filler) become left contexts for first phone of Four. 
• All first phones (except filler) become right contexts for last phone of Four 
• Silence can form contexts, but itself does not have any context dependency. 
• Filler phones (e.g. +breath+) are treated as silence when building contexts. Like silence, 
they themselves do not have any context dependency. 
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Building the triphone-based UNIGRAM sentence HMM


Lexicon 

Four 
Five 
Nine 
<sil> 
++Breath++ 

Linking rule:

Link from rightmost color x 

with right context color y 

to leftmost color y with 

right context color x
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Lexicon 

Four 
Five 
Nine 
<sil> 
++Breath++ 

All linking rules: 
• Begin goes to all silence 
left contexts 
• All silence right contexts go to end 
• Link from rightmost color x with 
right context color y to leftmost 
color y with right context color x 

start 
end 

Building the triphone-based UNIGRAM sentence HMM 

This completes the HMM 
for UNIGRAM NGUAGE 
MODEL based decoding. 

LA
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Building the iphone-based UNIGRAM FLAT 
sentence HMM 

Every box is a triphone, 
except SIL, beg and end. 
color keys on next slide 

Connect like colors 
from, end to beginning 
(except white), like 
this. Also connect SIL 
to beginning white. 
Not shown here to 
reduce clutter 

Every box contains an 
HMM 

tr
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Building the triphone-based UNIGRAM 

sentence HMM: color key to the previous slide 

AX(SH,N)


AX(T,N)


AX(Z,N)


AX(SIL,N)


Rehash 
Reset 
Resize 
Unhash 
Unset 
<sil> 

R(SH,IY) T(AE,R) Z(AE,R) SH(AE,R)


R(T,IY) T(AE,AX) Z(AE,AX) SH(AE,AX)


R(Z,IY) T(AE,SIL) Z(AE,SIL) SH(AE,SIL)


R(SIL,IY) 

R IY H AE SH 
R IY S EH T 
R IY S AY Z 
AX N H AE SH 
AX N S EH T 
SIL 
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Simplifying decoding


◆	 The example we have seen is that of FLAT search 
decoding with unigram language structure 
•	 The structure of the vocabulary is flat : each word has its own 

representation 

◆ Sentence HMM for bigram and trigram language model 

based flat search type graphs can get very large and 
complicated 

◆ Reducing the size of the Sentence HMM is an important 

engineering issue in designing a decoder 

◆ FLAT search is accurate, but memory-intensive and slow
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Lextree


starting 

started 

startup 

start-up 

Different words 
with identical pronunications 
must have different terminal 
nodes 

◆	 Words share phone (or triphone) HMMs. Use phonetic similarity to reduce 
size and memory requirements, and decrease computation to increase speed of 
decoding 

S T AA 

R 

R T 

TD 

DX 
IX 

IX 

NG 

DD 

AX 
PD 

PD 

start 
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Building the triphone-based UNIGRAM 
LEXTREE sentence HMM 

In a lextree, phones are 
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collapsed into a tree 
structure 

Connect like colors 
from, end to 
beginning (except 
white), like this. 
Not shown here to 
reduce clutter 
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Building the triphone-based UNIGRAM 
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LEXTREE sentence HMM 
In a lextree, phones are collapsed into a tree 
structure. Each phone then splits into 
triphones. 

All connections are made in this tree. 
Note that triphones are explicit at word 
beginings. This is because it is important to 
have finer distinctions between sounds at 
word beginings. At word endings we have 
composites, which are then connected to 
explicit triphones at word beginings. Some 
simpler decoders  have composites at word 
beginings too. 

Composite triphone 
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Unigram Lextree Decoding


Figure is conceptual. A more precise figure for triphone-based lextrees 
would consider triphonetic contexts 

S T AA 

R 

R T 

TD 

AX PD 

begin end 

Unigram probabilities 
known here 

P(word) 
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Unigram Lextree Decoding (More precisely)


Detailed triphone based lextree for this example	 Had there been multiple entry 
phones, there would have been 
multiple copies of TD and PD at 
the exit, one for each possible 

AA 

R 

R T 

TD 

AX PD 

S 

S 

S with left context TD 
and right context T 

S with left context PD 
and right context T 

T 

entry phone 

begin 
end 

S 

TD 

PD S with left context silence 
and right context T 

TD with left context R and right context silence 

PD with left context AX and right 
context silence 

TD with left context R and right context S 

A unigram lextree has several entry points, one for each possible preceding phone 

Here the possible preceding phones are TD, PD and silence (at “begin”) 
There are two triphone models for S, one with left context TD, and the other 

with left context PD 
Note that the model is a tree only from the second phone 
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Bigram Lextree Decoding


If all words have only a single pronunciation, all lextrees have only a single 
entry point since they can only be entered from a specific word 

Bigram trees 

S T AA 

R 

R T 

TD 

AX PD 

S T AA 

R 

R T 

TD 

AX PD 

S T AA 

R 

R T 

TD 

AX PD 

Unigram tree 

P(word|START) 

P(word|STARTED) 

More generally, If the 
preceding word has N 
pronunciations, the lextree can 
have upto N entry points. A 
word followed by a silence may 
be considered an alternate Bigram probabilities 

pronunciation for the word known here 
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Trigram Lextree Decoding


Trigram trees


S T AA 

R 

R T 

TD 

AX PD 

S T AA 

R 

R T 

TD 

AX PD 

S T AA 

R 

R T 

TD 

AX PD 

Unigram tree 

Bigram trees S T AA 

R 

R T 

TD 

AX PD 

S T AA 

R 

R T 

TD 

AX PD 

S T AA 

R 

R T 

TD 

AX PD 

S T AA 

R 

R T 

TD 

AX PD 

Trigram probabilities 

Lextrees have at most as many 
entry points as the number of 
pronunciations of entry word 

If D = size of vocab, for 
Trigram lex decoding you 
need D-squared trigram 

Only some 
links shown 

trees known here
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Issues with Lextrees


◆ Word identities not known on entry. This complicates 
language HMM structure even more than in flat search


● Lextree based language HMMs actually get much bigger than the 
corresponding flat HMMs in all but the unigram case 
� A flat HMM that incoroporates Ngram probabilities and has a 

vocabulary of D words needs DN-1 + DN-2 + .. D word HMMs. A 
lextree HMM for the same vocabulary needs DN-1 + DN-2 + .. D 
lextrees. 

●	 The number or transitions between sentence HMM state is 
proportionately larger 

● Several heuristics proposed to amend this problem 
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Reducing the size of lextrees incorporating Ngrams: 
Approximate decoding structures 

◆ Reduced size lextrees 
● Ngram decoding with single lextree 

● Ngram decoding with switching lextrees 

◆ Effect on recognition 
● The HMM structure supports weaker linguistic constraints 

● Recognition is suboptimal, but less memory intensive 
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Approximate decoding structures 
Single lextree based decoding 

Word histories for active words 
at every time instant kept in a 
backpointer table 

S T AA 

R 

R L 

K 

EH T 
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Decoding with a single lextree introduces errors


◆ Example with simplified two-state HMMs 
◆ P(x1..x3, THE) > P(x1..x3, TO) 

◆ P(x1..x3,THE)*P(x4..x6,THE | THE) < P(x1..x3,TO)*P(x4..x6,THE | TO). 

◆	 However, P(x4..x6,THE | TO) = P(x4..x6 | THE)*P(THE|TO) can never be computed since 
TO is never considered as a context. 

◆ Although, mathematically TO THE must win, here only THE THE can be hypothesized 

T 

O 

H E 
THE TO 

THE THE 

P(THE | THE) applied hereP(TO | THE) applied here 

E


H


O


T


t = 1 2 3 4 5 6 
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Approximate decoding structures 
Switching Lextree with 3 lextrees: Multiplexing in time


◆	 All three lextrees similarly 
connected 

◆ Entry points to tree staggered in 
time 

●	 E.g. one may transition into 
lextree1 only at t=1,4,7,.., into 
lextree2 only at t=2,5,8…, and 
into lextree3 only at t=3,6,9,.. 

◆	 Ngram contexts needed for 
word probabilities are obtained 
from a backpointer table that 
maintains Viterbi history of any 
path 

S T AA 

R 

R T 

TD 

AX PD 

S T AA 

R 

R T 

TD 

AX PD 

S T AA 

R 

R T 

TD 

AX PD 

A detailed diagram would 
show two entry points for 
each tree, and a more 
complicated figure 

Each lextree can have 
many entry points. 
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Switching lextrees


E 

H 

O 

T 

E 

H 

O 

T 

Single tree 

THE TO 

THE THE 

TO THE 

TO TO 

THE THE 

THE TO 

Switching tree 

“TO TH E” surv ives because it 
switches to the second lext ree. 

It can now  last long e nou gh for 
language probabilities to be applied so 
that a better informed decision can be 
taken 

This onl y works, how ever, if  the best 
entry from “TO”  to “ THE” occur s at a 
diffe rent time  than the entry from the 
competing “THE” bac k to “THE” 

t  = 1 2 3 4 5 6 1 2 3 4 5 6
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Reducing the size of flat HMMs: 

Approximate decoding structures


◆ Use lower order Ngram HMM structures to perform 
recognition using higher order Ngram probabilities 

● Ngram decoding from unigram structures 

● Ngram decoding from bigram structures (Pseudo-trigram search) 

● Use backpointer table to obtain word history 

◆ Effect on recognition 
● Imprecise application of high-order Ngram probabilities 

● Reduced memory requirements 
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Approximate decoding structures 
pseudo-bigram decoding from unigram structure in Flat search 


◆ Use a simple unigram structure 
◆ Apply bigram probabilities 

● Context for bigram obtained from word history 
● Simpler structure needs less memory and computation 
● Imprecise 

Conventional Unigram 
W1 

W2 

W3 

W4 

P(W1) 

P(W2) 

P(W3) 

P(W4) 
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Approximate decoding structures 

pseudo-bigram decoding from unigram structure in Flat search 


◆ Use a simple unigram structure .. 
◆ Apply bigram probabilities 

● Context for bigram obtained from word history 
● Simpler structure needs less memory and computation 
● Imprecise 

Pseudo-bigram from Unigram structure 

W1 

W2 

W3 

W4 

P(W1) 

P(W2) 

P(W3) 

P(W4) 

W1 

W2 

W3 

W4 

P(W1|W2) 

P(W2|W2) 

P(W3|W2) 

P(W4|W2) 

W1 

W2 

W3 

W4 

P(W1|W4) 

P(W2|W4) 

P(W3|W4) 

P(W4|W4) 

.. 
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Approximate decoding structures 

pseudo-trigram decoding from unigram structure in Flat search 


◆ Use a simple unigram structure .. 
◆ Apply bigram probabilities 

● Context for bigram obtained from word history 
● Simpler structure needs less memory and computation 
● Imprecise 

Pseudo-trigram from Unigram structure 

P(W1|W2,W4) 

W1 

W2 

W3 

W4 

W1 

W2 

W3 

W4 

W1 

W2 

W3 

W4 

P(W2|W2,W4) 

P(W3|W2,W4) 

P(W4|W2,W4) 

.. 
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Decoding with a unigram structure introduces errors


◆ Example with simplified HMMs 
◆ At t=4 THE competes with TO and wins. TO is no longer considered as a candidate first word on this path 

◆ The competition between THE and TO occurs before bigram probability P(THE|context) is applied. 

◆ P(THE|TO) may have been higher than P(THE|THE) and reversed the decision at t=4 

◆ However, the future word is unknown at the non-emitting node at t=4. Bigram probabilities could not be 
applied P(THE | THE) applied here after THE has won 

E


T 

O 

H E 

T 

T 

O 

H E 

T 

THE THE


H


T


O


T


t = 1 2 3 4 5 6 
THE wins 
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Approximate decoding structures 
Decoding using bigram structure 

o Instead of a unigram structure, use a bigram structure. This is precise for 
bigrams but approximate for decoding with trigrams 

bigram loop 

W1 

W2 

W3 

W4 
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Approximate decoding structures 

pseudo-trigram decoding from bigram structure in Flat search 


◆ Use a bigram structure 
◆ Apply trigram probabilities 

● Context for trigram obtained from word history 
● Again, this is imprecise 

Conventional Bigram Unrolled 

P(W1|W3,W1) 

.. 

W1 

W2 

W3 

W4 

W1 

W2 

W3 

W4 

W1 

W2 

W3 

W4 
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Reducing computation further


◆ Approximate structures are still large 
● Exhaustive search of all paths through them is prohibitive 

◆ Search must be further constrained 
● Beam search 

◆ Computation must be constrained 
● Gaussian selection 
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Constraining search for memory and speed: Beam Search

◆	 At any time instant, paths that score above a threshold score are allowed to 

survive. The threshold score may be fixed (fixed beam search), or relative 
to the highest scoring path at that time instant (relative beam search). Thus 
beam search involves pruning out of low scoring paths. 

◆	 The nodes which are allowed to survive at any time comprise the active-
list. Note that each node is an HMM state. Active lists are not always 
generated through direct score comparisons (that is slow). Many other 
methods are used. 

Relative Beam 
search 
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Constraining computation: Gaussian selection


◆ State probability densities are typically Gaussian mixtures 
◆ Explicit computation of probabilities from all Gaussians present in the 

active list is expensive. A subset of these Gaussians is first selected based 
on some Gaussian selection algorithm, and then only those Gaussians are 
explicitly computed. 

◆ Gaussian selection algorithms are based on 
● Prediction 
● Sharing of state densities 

� clustering 

●	 Pre-calculation of approximate scores from codebook for fast identification of 
best Gaussians 
� Suvector-quantization 
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Overall Decoder Architecture


Analog 

A/D 
speech Feature 

computation Search 

Graph 
construction 

State 
Probability 
Computation 

Recognition 
hypothesis 

Dictionary 

Language 
model 

Acoustic 
models 
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Summary and conclusions


◆ We have discussed basic decoding issues 

◆ We have discussed the construction of language HMMs for decoding 
● The dependence of the graph on the expected langauge 

● Statistical Ngram models and finite state grammars 

◆	 We have discussed some issues relating to graph size, memory 
requirement, computational requirements etc. 

◆	 This should place you in a position to comprehend the workings of 
most HMM-based speech recognition systems 

● And perhaps write a simple one yourself! 
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PART II


Training continuous density 

HMMs




Table of contents


◆ Review of continuous density HMMs 

◆ Training context independent sub-word units 
● Outline 

● Viterbi training 

● Baum-Welch training 

◆ Training context dependent sub-word units 
● State tying 

● Baum-Welch for shared parameters 
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Discrete HMM


◆ Data can take only a finite set of values 
● Balls from an urn 

● The faces of a dice 

● Values from a codebook 

◆ The state output distribution of any state is a normalized histogram 

◆ Every state has its own distribution


����������������������� 
���������������������������� 
������������������������ 
��������������������������� 
���������������������������� 

�������������������������� 
����������������������������� 
����������������������������� 
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Continuous density HMM


◆ There data can take a continuum of values 
● e.g. cepstral vectors 

◆ Each state has a state output density 

◆	 When the process visits a state, it draws a vector from the state output 
density for that state 

������������������������������� 
������������������������������ 

�������������������������� 
�������������������������� 
����������������������������� 
������������������ 
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Modeling state output densities


◆ The state output distributions might be anything in reality 
◆ We model these state output distributions using various simple densities 

● The models are chosen such that their parameters can be easily estimated

● Gaussian

● Mixture Gaussian

● Other exponential densities


◆	 If the density model is inappropriate for the data, the HMM will be a poor 
statistical model 

● Gaussians are poor models for the distribution of power spectra 

�������� ���������������� ��������� 
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Sharing Parameters


◆ 

◆ 

◆ 

◆ 

◆ 

unit1 unit2 

Insufficient data to estimate all 
parameters of all Gaussians 

Assume states from different 
HMMs have the same state output 
distribution 

● Tied-state HMMs 

Assume all states have different 
mixtures of the same Gaussians 

● Semi-continuous HMMs 

Assume all states have different 
mixtures of the same Gaussians 
and some states have the same 
mixtures 

●	 Semi-continuous HMMs with tied 
states 

Other combinations are possible 
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Training models for a sound unit


AX AO EH � Training involves grouping data 
from sub-word units followed by 
parameter estimation 

F AO K S IH N S AO K S AO N B AO K S AO N N AO K S 

���������������������������
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� 

� 

� 

� 

Training models for a sound unit


For a 5-state HMM, segment data 
from each instance of sub-word unit 

to 5 parts, aggregate all data from 
corresponding parts, and find the 
statistical parameters of each of the 
aggregates 

Training involves grouping data 
from sub-word units followed by 
parameter estimation 

Indiscriminate grouping of 
vectors of a unit from different 
locations in the corpus results in 
Context-Independent (CI) 
models 

Explicit boundaries 
(segmentation) of sub-word 
units not available 

�	 We do not know where each 
sub-word unit begins or ends 

Boundaries must be estimated 
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Learning HMM Parameters


◆ Viterbi training 
● Segmental K-Means algorithm 

● Every data point associated with only one state 

◆ Baum-Welch 
● Expectation Maximization algorithm 

● Every data point associated with every state, with a probability 
� A (data point, probability) pair is associated with each state 
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Viterbi Training


◆ 1. Initialize all HMM parameters 

◆	 2. For each training utterance, find best state sequence using Viterbi 
algorithm 

◆	 3. Bin each data vector of utterance into the bin corresponding to its 
state according to the best state sequence 

◆	 4. Update counts of data vectors in each state and number of 
transitions out of each state 

◆ 5. Re-estimate HMM parameters 
● State output density parameters 

● Transition matrices 

● Initial state probabilities 

◆ 6. If the likelihoods have not converged, return to step 2. 
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Viterbi Training: Estimating Model Parameters


◆ Initial State Probability 
●	 Initial state probability π(s) for any state s is the ratio of the number of 

utterances for which the state sequence began with s to the total number of 
utterances 

∑δ (state(1) = s) 
π (s) = utterance 

No.of utterances 

◆ Transition probabilities 
●	 The transition probability a(s,s’) of transiting from state s to s’ is the ratio 

of the number of observation from state s, for which the subsequent 
observation was from state s’, to the number of observations that were in s 

∑ ∑δ (state(t) = s, state(t +1) = s’) 
a(s, s’) = utterance t 

∑ ∑δ (state(t) = s) 
utterance t 
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Viterbi Training: Estimating Model Parameters


◆ State output density parameters 
● Use all the vectors in the bin for a state to compute its state output density 

●	 For Gaussian state output densities only the means and variances of the 
bins need be computed 

●	 For Gaussian mixtures, iterative EM estimation of parameters is required 
within each Viterbi iteration 
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Baum-Welch Training


◆ 1. Initialize HMM parameters 

◆ 2. On each utterance run forward backward to compute following 
terms: 

●	 γutt(s,t) = a posteriori probability given the utterance, that the process 
was in state s at time t 

●	 γutt(s,t,s’,t+1) = a posteriori probability given the utterance, that the 
process was in state s at time t, and subsequently in state s’ at time t+1 

◆ 3. Re-estimate HMM parameters using gamma terms 

◆ 4. If the likelihood of the training set has not converged, return to 
step 2. 
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Baum-Welch: Computing A Posteriori State 
Probabilities and Other Counts 

◆ Compute α and β terms using the forward backward 
algorithm 

α(s, t | word ) = ∑α(s’, t −1| word )P(s | s’)P( X t | s) 
s’ 

β (s, t | word ) = ∑ β (s’, t +1| word )P(s’| s)P( X t +1 | s’) 
s ’ 

◆ Compute a posteriori probabilities of states and state 
transitions using α and β values 

α (s, t)β (s, t)γ (s, t | word ) = 
∑α(s’, t)β (s’, t) 

s ’ 

γ (s, t, s 
� 
, t +1| word ) = α (s, t)P(s | s)P( X t +1 | s )β (s , t +1) 

∑α(s’, t)β (s’, t) 
s ’ 

6.345 Automatic Speech Recognition  Designing HMM-based speech recognition systems 53 



Baum-Welch: Estimating Model Parameters


◆ Initial State Probability 
●	 Initial state probability π(s) for any state s is the ratio of the expected 

number of utterances for which the state sequence began with s to the total 
number of utterances 

∑γ utt (s,1) 
π (s) = utterance 

No.of utterances 

◆ Transition probabilities 
●	 The transition probability a(s,s’) of transiting from state s to s’ is the ratio 

of the expected number of observations from state s for which the 
subsequent observation was from state s’, to the expected number of 
observations that were in s 

∑ ∑γ utt (s, t, s’, t +1) 
a(s, s’) = utterance t 

∑ ∑γ utt (s, t) 
utterance t 
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Baum-Welch: Estimating Model Parameters


◆ State output density parameters 
●	 The a posteriori state probabilities are used along with a posteriori 

probabilities of the Gaussians as weights for the vectors 

●	 Means, covariances and mixture weights are computed from the 
weighted vectors 
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Training context dependent (triphone) models


�	 Context based grouping of 
observations results in finer, 
Context-Dependent (CD) models 

�	 CD models can be trained just like 
CI models, if no parameter sharing 
is performed 

�	 Usually insufficient training data to 
learn all triphone models properly 

� Parameter estimation problems 

�	 Parameter estimation problems for 
CD models can be reduced by 
parameter sharing. For HMMs this 
is done by cross-triphone, within-
state grouping 
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. (  

  

Grouping of context-dependent units for 
parameter estimation 

�	 Partitioning any set of observation 
vectors into two groups increases 
the average (expected) likelihood of 
the vectors 

The expected log-likelihood of a vector 
drawn from a Gaussian distribution with 
mean � and variance C is 

The assignment of vectors to states 
E 



 
log 



 C d2π 

1 
e−0 5  x−µ )T C−1 ( x−µ ) 












can be done using previously trained

CI models or with CD models that have

been trained without parameter sharing 
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. (  

  
0 5  

Expected log-likelihood of a vector drawn 
from a Gaussian distribution 

E 

log 


 

C d2π 
1 

e−0 5  x−µ )T C−1 ( x−µ ) 




 =


   


E[− . (  x − µ)T C−1( x − µ) − 0 5log(2π d C )]=
. 

− 0 5E x  − µ)T C−1( x − µ)]− 0 5E[log(2π d C )]=. [( . 

− 0 5d − 0 5log(2π d C ). . 

•This is a function only of the variance of the Gaussian 

•The expected log-likelihood of a set of N vectors is 

− 0 5Nd − 0 5N log(2π d C ). . 
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Grouping of context-dependent units for 
parameter estimation 

If we partition a set of N vectors 
with mean � and variance C into 
two sets of vectors of size N1 
and N2 , with means �1 and �2 and 
variances C1 and C2 respectively, 
the total expected log-likelihood of 
the vectors after splitting becomes 

. 1 .− 0 5N d  − 0 5N1 log(2π d C1 )− 0.5N2d − 0.5N2 log(2π d C2 ) 
�	 The total log-likelihood has 

increased by 

N log(2π d C )− 0.5N1 log(2π d C1 )− 0.5N2 log(2π d C2 ) 
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Grouping of context-dependent units for 
parameter estimation 

� Observation vectors partitioned into �
groups to maximize within class �
likelihoods 

� Recursively partition vectors into a �
complete tree 

� Prune out leaves until desired 
number of leaves obtained 

� The leaves represent tied states 
(sometimes called senones) 
�	 All the states within a leaf share the 

same state distribution 

� 2n-1 possible partitions for n vector 
groups. Exhaustive evaluation too �
expensive 

� Linguistic questions used to reduce �
search space 
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Linguistic Questions


◆	 Linguistic questions are pre-defined phone classes. Candidate 
partitions are based on whether a context belongs to the phone 
class or not 

◆	 Linguistic question based clustering also permits us to compose 
HMMs for triphones that were never seen during training 
(unseen triphones) 
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Composing HMMs for unseen triphones


◆	 For every state of the N-state HMM for the unseen 
triphone, locate appropriate leaf of the tree for that state 

◆	 Locate leaf by answering the partitioning questions at 
every branching of the tree 

Vowel? 

Z or S? 
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Linguistic Questions


◆	 Linguistic questions are pre-defined phone classes. Candidate 
partitions are based on whether a context belongs to the phone class 
or not 

◆	 Linguistic question based clustering also permits us to compose HMMs 
for triphones that were never seen during training (unseen triphones) 

◆	 Linguistic questions must be meaningful in order to deal effectively with 
unseen triphones 

A 

E 

I Z 

SH 

Meaningful Linguistic Questions? 

Left context: (A,E,I,Z,SH) 

ML Partition: (A,E,I) (Z,SH) 

(A,E,I) vs. Not(A,E,I) 

(A,E,I,O,U) vs. Not(A,E,I,O,U) 

◆	 Linguistic questions can be automatically designed by clustering of 
context-independent models 
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Other forms of parameter sharing


◆ Ad-hoc sharing: sharing based on human decision 
●	 Semi-continuous HMMs – all state densities share the same 

Gaussians 

●	 This sort of parameter sharing can coexist with the more refined 
sharing described earlier. 
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Baum-Welch: Sharing Model Parameters


◆ Model parameters are shared between sets of states 
●	 Update formulae are the same as before, except that the numerator 

and denominator for any parameter are also aggregated over all the 
states that share the parameter 
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Conclusions


◆	 Continuous density HMMs can be trained with data that 
have a continuum of values 

◆	 To reduce parameter estimation problems, state 
distributions or densities are shared 

◆ Parameter sharing has to be done in such a way that 
discrimination between sounds is not lost, and new sounds 
are accounted for 

● Done through regression trees 

◆	 HMMs parameters can be estimated using either Viterbi or 
Baum-Welch training 
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