Lecture # 17
Session 2003

Finite-State Techniques for Speech Recognition

e Motivation
e definitions

— finite-state acceptor (FSA)

— finite-state transducer (FST)

— deterministic FSA/FST

- weighted FSA/FST
e oOperations

— closure, union, concatenation

— intersection, composition

— epsilon removal, determinization, minimization
e on-the-fly implementation
e FSTs in speech recognition: recognition cascade
e research systems within SLS impacted by FST framework
e conclusion

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 1

rahkuma
Lecture # 17
Session 2003

Motivation

e many speech recognition components/constraints are finite-state
- language models (e.g., n-grams, on-the-fly CFGs)
- lexicons
— phonological rules
- N-best lists
— word graphs
— recognition paths
e should use same representation and algorithms for all
— consistency

— make powerful algorithms available at all levels
— flexibility to combine or factor in unforeseen ways

o AT&T [Pereira, Riley, Ljolje, Mohri, et al.]

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 2

Finite-State Acceptor (FSA)

b

. a‘@a‘@b‘@)

accepts (a|b)*ab

e definition:
- finite number of states
— one initial state
— at least one final state
— transition labels:
+ label from alphabet ¥ must match input symbol
x € consumes no input

e accepts a regular language

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 3

Finite-State Transducer (FST)

e.g., (aba)a — (bab)a

e definition, like FSA except:
— transition labels:
+ pairs of input:output labels
x* € on input consumes no input

* € on output produces no output

e relates input sequences to output sequences (maybe ambiguous)
e FST with labels x:x is an FSA

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 4

Finite-State Transducer (FST)

e final states can have outputs, but we use € transitions instead

@ a:b ‘@ b ‘@ a:b ‘@ €:b ‘@

e transitions can have multiple labels, but we split them up

@ a,b:a ‘@ c:b,c ‘@
4_@ a.a :@ b:b :@ c.C :@

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 5

Weights

. a/0.6 =/l\ b/0.7 _
a/0.4 b/0.3

e transitions and final states can have weights (costs or scores)
e weight semirings (&,®,0, 1), ® ~ parallel, ® ~ series:

- 0oex=Xx,19x=%x,098x=0,091=0

- (+,%,0,1) ~ probability (sum parallel, multiply series)

N Al N b
C) N

ab/0.5

— (min, +, 0, 0) ~ —log probability (best of parallel, sum series)

CO a/04 7\ bl03
N

ab/1.2

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 6

Deterministic FSA or FST

e input sequence uniquely determines state sequence
e NO € transitions

e at most one transition per label for all states

£+
N

non-deterministic (NFA)

deterministic (DFA)

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 7

Operations

e constructive operations:
— closure A* and A*
— union AUB

— concatenation AB

- complementation A (FSA only)
— intersection AnB (FSA only)
— composition A o B (FST only, FSA =n)

e identity operations (optimization):
— epsilon removal
— determinization
— minimization

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 8

Closure: AT A*

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 9

Union: AUB

parallel combination, e.qg.,

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 10

Concatenation: AB

serial combination, e.qg.,

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 11

FSA Intersection: AnB

e output states associated with input state pairs (a, b)
e output state is final only if both a and b are final
e transition with label x only if both a and b have x transition

e weights combined with ®

g b

= —» = X*(x|y) n x*yz* = x*y

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 12

FST Composition: AoB

e output states associated with input state pairs (a, b)
e output state is final only if both a and b are final
e transition with label x:y only if a has x:x and b has «:y transition

e weights combined with ®

(03 IT:/ih/ =@ et/ =C<;>> o

fin/:[in]

M:ftel]
€[t
€:[t]

e (words — phonemes) o (phonemes — phones) = (words — phones)

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 13

FST Composition: € Interaction

e A output € allows B to hold

e Binput € allows A to hold

e multiple paths typically filtered (resulting in dead end states)

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 14

FST Composition: Parsing

e language model from JSGF grammar compiled into on-the-fly
recursive transition network (RTN) transducer G:

<top> = <forecast> | <conditions> | ... ;
<forecast> = [what is the] forecast for <city> {FORECAST};
<city> = boston [massachusetts] {BOS}

| chicago [illinois] {ORD};

e “what is the forecast for boston” o G —
— BOS FORECAST output tags only

— <forecast> what is the forecast for <city> boston </city>
</forecast> bracketed parse

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 15

FST Composition Summary

e very powerful operation
e can implement other operations:
— Intersection
— application of rules/transformations
— Instantiation
— dictionary lookup

— parsing

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 16

Epsilon Removal (Identity)

e required for determinization

e compute e-closure for each state: set of states reachable via €*

e can dramatically increase number of transitions (copies)

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 17

FSA Determinization (Identity)

e subset construction
— output states associated with subsets of input states
— treat a subset as a superposition of its states

e worst case is exponential (2N)
e locally optimal: each state has at most |>]| transitions

a a
(=) ~

e weights: subsets of (state, weight)

— weights might be delayed
— transition weight is @ subset weights
— worst case is infinite (not common)

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 18

FST Determinization (ldentity)

e subsets of (state, output*, weight)
e outputs and weights might be delayed

e transition output is least common prefix of subset outputs
[tI:- TWO

e worst case is infinite (not uncommon due to ambiguity)

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 19

FST Ambiguity

e input sequence maps to more than one output (e.g., homophones)

e finite ambiguity (delayed to output states):

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 20

FST Ambiguity

e cycles (e.g., closure) can produce infinite ambiguity

e infinite ambiguity (cannot be determinized):
a.Xx

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 21

Minimization (Identity)

e minimal Z minimal number of states
e minimal = deterministic with minimal number of states
e merge equivalent states, will not increase size

e cyclic O(NlogN), acyclic O(N)

/s/:BOSTON We —~ laxle N Inl’e ‘

/@ ® @

Ibl-g Jaol:€ (5 /z:BOSNIA ‘@ Inl:g ‘@ fiyre N laxe ‘@
®

N

In/:g ‘®

fao/:AUSTIN
Isl:€

e ‘@ lax/:€

/zI:'BOSNIA

Inl:€ ‘/;\ liyl.€ ‘@%
_/
Itl:e N [ax/:€ Q_&’
& 8

/s/:BOSTON

fao/:AUSTIN

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 22

Example Lexicon

6.345 Automatic Speech Recognition

z:zinc @ e @ n:e @ c:E

z:zillions @ K @ l:e @ K @ i€ @ 0 @ n:g @ S:€ e

z:zigzag @ i @ g€ @ ze @ aE . ge

Z:zest @ e:€ @ Si€ @ te @

z:zeroth @ e:€ @ re @ 0:€ @ te @ h:e)

z:zeros @ e:€ @ re @ 0:€ @ siE

z:zeroing @ e:€ @ re @ 0:€ @5 i g€ .

z:zer0es @ ee @ re @ g @ e @ SiE

z:zeroed @ e @ re @ 0:€ i ee e de

z:zero @ e:€ @ re @ 0:€

z:zenith @ ei€ @ ne /o i€ a te @ h:€

z:zebras @ e @ b:e @ re @ a:e o S:E

z:zebra @ e:€ @ b:e @ re @ ae

z:zealousness @ e:€ @ a€e @ I @ 0:€ " u: o7 SiE @ n:e @ e:e @ sig @ i€
z:zealously @ e @ aE @ l.e @ o€ @ uE @ @ l.e @ yiE 1o
z:zealous @ e:g @ aE @ K3 @ 0:8@ ue @ SiE @

z:zeal @ e:g @ ag @ I:g

Finite-State Techniques [Hetherington] 23

121

Example Lexicon: € Removed

6.345 Automatic Speech Recognition

Finite-State Techniques [Hetherington] 24

Z:zillions e N ke SN ke N e N o' N NE N sE -
N N \/ N \Z/ \J
z:zigzag . .
i€ @ g€ Q zEe @ ae @ g:€
e:€ @ S:E O te
z:zeroth e:g re - 0:€ @ te @ h:e
z:zeros @ e @ re _@ 0:€ @ SiE
z:zeroing e @ re @ 0:€ @ i€ @ n:e @ g€
Z:7€roes e @ re _@ 0:€ @ e @ S
z:zeroed /\ e @ re @ 0:€ o e:€ @ d:g
z:zero
:s 0:€
z:zenith a 0
() ME i€ t:e h:e ‘
}O) &) (=) O,
/\ bie /N re N ae N S:E
z:zebra KJ \49 \60/ @
e /N bE /N rnE on ae O
(13 30 a7 61
z:zealousness O ~ P ~
&8) @&t /48\ l.e @ 0:€ s U fm\ S:E /82\ n:e /84\ e /86\ S:€ /87\ S:€
vy N N N Q \Z/ \ZJ N \Z/ N
,@ e:€ @ aE _@ l:€ @ 0:€ @ u:E @ S:€ @ l:€ @ Y€
z:zealous
,@ e:€ @ aE @ l:€ o 0:€ @ u:E @ S:E 101
,@ e @ a€ @ l.g

104

Example Lexicon:

l:zillions

Determinized

g:zigzag

n:zenith

——(——)

s:zeroes

17

e lexical tree

e sharing at beginning of words: can prune many words at once

6.345 Automatic Speech Recognition

t:zeroth

SIZeros

| &
&:zeal '

o€
.\ =
N

d:zeroed

€:zebra

s:zebras

€:zealous

n:zealousness

()

l:zealously

N

Finite-State Techniques [Hetherington] 25

Example Lexicon: Minimized

C:€

©, ,@ ne

n:zinc

€:zealous

t:e i:zeroing / |

n:zealousness @ ee e siE e
l:zealously :

h:e

t:zeroth

re

S.zeros

ag
23

e sharing at the end of words

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 26

€:zebra

d:zeroed ’ ‘

On-The-Fly Implementation

e lazy evaluation: generate only relevant states/transitions
e enables use of infinite-state machines (e.g., CFQG)
e on-the-fly:

— composition, intersection

— union, concatenation, closure

— € removal, determinization

e not on-the-fly:
- trimming dead states
— minimization
- reverse

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 27

FSTs In Speech Recognition

e cascade of FSTs:

(SoA)o(CoPol o(G)
— ——
R

— §: acoustic segmentation®
— A: application of acoustic models*

— C: context-dependent relabeling (e.g., diphones, triphones)
— P: phonological rules

— [: lexicon

- G: grammar/language model (e.g., n-gram, finite-state, RTN)

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 28

FSTs In Speech Recognition

e In practice:
— S o A is acoustic segmentation with on-demand model scoring
— CoPoL oG: precomputed and optimized or expanded on the fly

— composition S c A with C o P o L o G computed on demand
during forward Viterbi search

— might use multiple passes, perhaps with different G

e advantages:

— forward search sees a single FSTR=C o P o L o G, doesn’t need
special code for language models, lexical tree copying, etc...

— can be very fast

— easy to do cross-word context-dependent models

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 29

N-gram Language Model (G): Bigram

. Boston/2.8
in/1.2

Boston/4.3
in/3.3 £/8.2 Boston
// '

elr.2

@ .

Nome/6.3 ~

€/3.2

e each distinct word history has its own state
e direct transitions for each existing n-gram

e c transitions to back-off state (%),
€ removal undesirable

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 30

Phonological Rules (P)

e segmental system needs to match explicit segments

e ordered rules of the form:

{V SV} b
{m} b
{} b
{s} S
{} S

{V1ir wry =
{} =>
{} =>
{} =>
{} =>

bcl [b]

[bcl] b ;

bcl b

[s]

S

e rule selection deterministic, rule replacement may be ambiguous

e compile rules into transducer P =P; o P,

— P; applied left-to-right

— P, applied right-to-left

6.345 Automatic Speech Recognition

Finite-State Techniques [Hetherington] 31

EM Training of FST Weights

e FSA A, given set of examples x
— straightforward application of EM to train P(x)

— our tools can also train an RTN (CFG)

e FST Tx., given set of example pairs x : y

- straightforward application of EM to train Ty, = P(x,y)

— Txy = Txy © [det(T,)] " = P(x|y) [Bayes’ Rule]
o FST Ty within cascade Sy|x o Ty o Uz given v : z

- X=VoS

—y=Uoz

- train Tx)y given x : y

e We have used these techniques to train P, L, and (P o L).

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 32

Conclusion

e introduced FSTs and their basic operations
e use of FSTs throughout system adds consistency and flexibility

e consistency enables powerful algorithms everywhere
(write algorithms once)

o flexibility enables new and unforeseen capabilities
(but enables you to hang yourself too)

e SUMMIT (Jupiter) 25% faster when converted to FST framework,
yet much more flexible

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 33

References

e E. Roche and Y. Schabes (eds.), Finite-State Language Processing,

MIT Press, Cambridge, 1997.

e M. Mohri, “Finite-state transducers in language and speech
processing,” in Computational Linguistics, vol. 23, 1997.

e M. Mohri, M. Riley, D. Hindle, A. Ljolje, F. Pereira, “Full expansion
of context-dependent networks in large vocabulary speech
recognition”, in Proc. ICASSP, Seattle, 1998.

6.345 Automatic Speech Recognition Finite-State Techniques [Hetherington] 34

