Lecture # 17 Session 2003 Finite-State Techniques for Speech Recognition

- motivation
- definitions
 - finite-state acceptor (FSA)
 - finite-state transducer (FST)
 - deterministic FSA/FST
 - weighted FSA/FST
- operations
 - closure, union, concatenation
 - intersection, composition
 - epsilon removal, determinization, minimization
- on-the-fly implementation
- FSTs in speech recognition: recognition cascade
- research systems within SLS impacted by FST framework
- conclusion

- many speech recognition components/constraints are finite-state
 - language models (e.g., *n*-grams, on-the-fly CFGs)
 - lexicons
 - phonological rules
 - *N*-best lists
 - word graphs
 - recognition paths
- should use same representation and algorithms for all
 - consistency
 - make powerful algorithms available at all levels
 - flexibility to combine or factor in unforeseen ways
- AT&T [Pereira, Riley, Ljolje, Mohri, et al.]

accepts $(a|b)^*ab$

- definition:
 - finite number of states
 - one initial state
 - at least one final state
 - transition labels:
 - * label from alphabet Σ must match input symbol
 - $* \epsilon$ consumes no input
- accepts a regular language

- definition, like FSA except:
 - transition labels:
 - * *pairs* of input:output labels
 - $* \epsilon$ on input consumes no input
 - $* \epsilon$ on output produces no output
- relates input sequences to output sequences (maybe ambiguous)
- FST with labels *x*:*x* is an FSA

• final states can have outputs, but we use ϵ transitions instead

• transitions can have multiple labels, but we split them up

- transitions and final states can have weights (costs or scores)
- weight *semirings* (\oplus , \otimes , **0**, **1**), \oplus ~ parallel, \otimes ~ series:
 - $-\mathbf{0} \oplus x = x, \mathbf{1} \otimes x = x, \mathbf{0} \otimes x = \mathbf{0}, \mathbf{0} \otimes \mathbf{1} = \mathbf{0}$
 - (+, ×, 0, 1) ~ probability (sum parallel, multiply series)

- $(\min, +, \infty, 0) \sim -\log \text{ probability (best of parallel, sum series)}$

- input sequence uniquely determines state sequence
- no ϵ transitions
- at most one transition per label for all states

- constructive operations:
 - closure A^* and A^+
 - union $A \cup B$
 - concatenation AB
 - complementation \overline{A}
 - intersection $A \cap B$
 - composition $A \circ B$
- identity operations (optimization):
 - epsilon removal
 - determinization
 - minimization

(FSA only) (FSA only) (FST only, FSA $\equiv \cap$)

parallel combination, e.g.,

serial combination, e.g.,

- output states associated with input state pairs (*a*, *b*)
- output state is final only if both *a* and *b* are final
- transition with label x only if both a and b have x transition
- weights combined with ⊗

- output states associated with input state pairs (*a*, *b*)
- output state is final only if both *a* and *b* are final
- transition with label x:y only if a has x: α and b has α :y transition

• (words \rightarrow phonemes) • (phonemes \rightarrow phones) = (words \rightarrow phones)

- A output ϵ allows B to hold
- B input ϵ allows A to hold

• multiple paths typically filtered (resulting in dead end states)

• language model from JSGF grammar compiled into on-the-fly recursive transition network (RTN) transducer *G*:

- "what is the forecast for boston" $\circ G \rightarrow$
 - BOS FORECAST output tags only
 - <forecast> what is the forecast for <city> boston </city> </forecast> bracketed parse

- very powerful operation
- can implement other operations:
 - intersection
 - application of rules/transformations
 - instantiation
 - dictionary lookup
 - parsing

- required for determinization
- compute ϵ -closure for each state: set of states reachable via ϵ^*

• can dramatically increase number of transitions (copies)

- subset construction
 - output states associated with *subsets* of input states
 - treat a subset as a superposition of its states
- worst case is exponential (2^N)
- locally optimal: each state has at most $|\Sigma|$ transitions

- weights: subsets of (state, weight)
 - weights might be delayed
 - transition weight is \oplus subset weights
 - worst case is infinite (not common)

FST Determinization (Identity)

- subsets of (state, output*, weight)
- outputs and weights might be delayed
- transition output is least common prefix of subset outputs

• worst case is infinite (not uncommon due to ambiguity)

- input sequence maps to more than one output (e.g., homophones)
- finite ambiguity (delayed to output states):

FST Ambiguity

- cycles (e.g., closure) can produce infinite ambiguity
- infinite ambiguity (cannot be determinized):

• a solution: our implementation forces outputs at #, a special ϵ

Minimization (Identity)

- minimal \neq minimal number of states
- minimal = deterministic with minimal number of states
- merge *equivalent* states, will not increase size
- cyclic $O(N \log N)$, acyclic O(N)

Example Lexicon: ϵ Removed

Example Lexicon: Determinized

- lexical tree
- sharing at beginning of words: can prune many words at once

Example Lexicon: Minimized

• sharing at the end of words

On-The-Fly Implementation

- lazy evaluation: generate only relevant states/transitions
- enables use of infinite-state machines (e.g., CFG)
- on-the-fly:
 - composition, intersection
 - union, concatenation, closure
 - ϵ removal, determinization
- not on-the-fly:
 - trimming dead states
 - minimization
 - reverse

• cascade of FSTs:

$$(S \circ A) \circ \underbrace{(C \circ P \circ L \circ G)}_{R}$$

- S: acoustic segmentation*
- A: application of acoustic models*
- C: context-dependent relabeling (e.g., diphones, triphones)
- *P*: phonological rules
- *L*: lexicon
- G: grammar/language model (e.g., *n*-gram, finite-state, RTN)

FSTs in Speech Recognition

- in practice:
 - $S \circ A$ is acoustic segmentation with on-demand model scoring
 - $C \circ P \circ L \circ G$: precomputed and optimized or expanded on the fly
 - composition S

 A with C
 P
 L
 G computed on demand during forward Viterbi search
 - might use multiple passes, perhaps with different G
- advantages:
 - forward search sees a *single* FST $R = C \circ P \circ L \circ G$, doesn't need special code for language models, lexical tree copying, etc...
 - can be very fast
 - easy to do cross-word context-dependent models

N-gram Language Model (G): Bigram

- each distinct word history has its own state
- direct transitions for each existing *n*-gram
- ϵ transitions to back-off state (*), ϵ removal undesirable

Phonological Rules (P)

- segmental system needs to match explicit segments
- ordered rules of the form:

b	{Vlrw}	=>	bcl [b]	•
b	{}	=>	[bcl] b	;
b	{}	=>	bcl b	;
S	{}	=>	[s]	•
S	{}	=>	S	•
	່ b ຮ	<pre>b {V l r w} b {} b {} b {} s {} s {} s {}</pre>	b {} => b {} => s {} =>	b {} => bcl b s {} => [s]

- rule selection deterministic, rule replacement may be ambiguous
- compile rules into transducer $P = P_l \circ P_r$
 - P_l applied left-to-right
 - P_r applied right-to-left

EM Training of FST Weights

- FSA *A_x* given set of examples *x*
 - straightforward application of EM to train P(x)
 - our tools can also train an RTN (CFG)
- FST *T_{x:y}* given set of example pairs *x* : *y*
 - straightforward application of EM to train $T_{x,y} \Rightarrow P(x, y)$

-
$$T_{x|y} = T_{x,y} \circ [\det(T_y)]^{-1} \Rightarrow P(x|y)$$
 [Bayes' Rule]

- FST $T_{x|y}$ within cascade $S_{v|x} \circ T_{x|y} \circ U_z$ given v : z
 - $-x = v \circ S$
 - $-y = U \circ z$
 - train $T_{x|y}$ given x : y
- We have used these techniques to train P, L, and $(P \circ L)$.

- introduced FSTs and their basic operations
- use of FSTs throughout system adds consistency and flexibility
- consistency enables powerful algorithms everywhere (write algorithms once)
- flexibility enables new and unforeseen capabilities (but enables you to hang yourself too)
- SUMMIT (Jupiter) 25% faster when converted to FST framework, yet much more flexible

- E. Roche and Y. Schabes (eds.), *Finite-State Language Processing*, MIT Press, Cambridge, 1997.
- M. Mohri, "Finite-state transducers in language and speech processing," in *Computational Linguistics*, vol. 23, 1997.
- M. Mohri, M. Riley, D. Hindle, A. Ljolje, F. Pereira, "Full expansion of context-dependent networks in large vocabulary speech recognition", in Proc. ICASSP, Seattle, 1998.