Lecture # 2
Session 2003

Acoustic Theory of Speech Production

e Overview
e Sound sources
e Vocal tract transfer function
- Wave equations
— Sound propagation in a uniform acoustic tube
e Representing the vocal tract with simple acoustic tubes
e Estimating natural frequencies from area functions

e Representing the vocal tract with multiple uniform tubes

6.345 Automatic Speech Recognition Acoustic Theory of Speech Production 1


rahkuma
Lecture # 2
Session 2003


let mical Structures for Speech Production

Nasal Cavity "f

Hard Palate — (.
Soft Palate (Velum)

Tongue
Jaw

Thyroid Cartilage

Vocal Folds

Trachea

Lung
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Phonemes in American English

PHONEME EXAMPLE

/v/
/1/
/e/
/e/
/&/
/a/
/2/
/A/
/ov/
/of
/uv/
/3/
/a/
/>/
/av/
/3/

beat
bit
bait
bet
bat
Bob
bought
but
boat
book
boot
Burt
bite
Boyd
bout
about
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PHONEME EXAMPLE

/s/
/5/
/t/
/6/
/z/
/z/
/v/
/0/
/p/
/t/
/k/
/b/
/d/
/a/

PHONEME

see /w/
she /t/
fee /1/
thief /v/
Z /m/
Gigi /n/
\% /n/
thee /¢/
pea /i/
tea /h/
key

bee

Dee

geese

EXAMPLE

wet
red

let
yet
meet
neat
sing
church
judge
heat
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Places of Articulation for Speech Sounds

7\

Palato-Alveolar Velar
Alveolar
L abial N
> < Uvular
Dentd \)

R

6.345 Automatic Speech Recognition Acoustic Theory of Speech Production 4



Speech Waveform: An Example

Waveform

eeeee

Two plus seven is less than ten
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A Wideband Spectrogram
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Wide-Band Specirogram

Two plus seven is less than ten
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Acoustic Theory of Speech Production

e The acoustic characteristics of speech are usually modelled as a
sequence of source, vocal tract filter, and radiation characteristics

Us

Pr(jQ) =SGQTUQ)R(Q)

e For vowel production:

SGQ) = Us(jQ)
rgQ) = UL(Q)/Uc(Q)
RGQ) = P(Q)/ULGQ)
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Sound Source: Vocal Fold Vibration

Modelled as a volume velocity source at glottis, Us(jQ2)

Pr (1)

|

To=1/F,
[— U (f) 4
e 112
Us(1) 4
s
VARYARYANYAR
Fo ave (Hz) | Fop min (Hz) | Fp max (Hz)
Men 125 380 200
Women 225 150 350
Children 300 200 500
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Sound Source: Turbulence Noise

e Turbulence noise is produced at a constriction in the vocal tract
— Aspiration noise is produced at glottis
— Frication noise is produced above the glottis

e Modelled as series pressure source at constriction, Ps(jQ)

R ()
§V ¢
025
. . . . . 4A
V: Velocity at constriction D: Critical dimension = P A
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Vocal Tract Wave Equations

Define: u(x,t) = particle velocity
U(x,t) = volume velocity (U = uA)
p(x,t) = sound pressure variation (P =Pp + p)
p = density of air
c = velocity of sound

e Assuming plane wave propagation (for a cross dimension << A),
and a one-dimensional wave motion, it can be shown that

op_ ou ou_ 10p % _10%
ox  Par 0x pc? ot 0x2 ¢2 0t?
e Time and frequency domain solutions are of the form

— t _§ T e f =i —SX/C _ sx/c
ulx,t) =u"(t c) u (t+C) ux,s) o [P+e P_e ]

P = pe [u+(t - g) rults g)] p(x,s) = Pre ¥/ + P_e/¢
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Propagation of Sound in a Uniform Tube

° -

X = -1 Xx=0

e The vocal tract transfer function of volume velocities is

UL(Q) U4, jQ)

TV = 5.9 =~ 10,0

e Using the boundary conditions U(0, s) = Us(s) and P(—€,s) =0
2 1

T(s)= est/c 4 p—st/c TGQ) = cos(Q€/c)
e The poles of the transfer function T(jQ) are where cos(Q€/c)=0
2mfu)€  (2n-1) < B 4 3
=TT fa= @D A==y =12,
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Propagation of Sound in a Uniform Tube (con’t)

e For c =34,000cm/sec, £ =17 cm, the natural frequencies (also
called the formants) are at 500 Hz, 1500 Hz, 2500 Hz, ...

IS

0 1 2 3 4 5 K

<

20 logo T (JQ)

K

Frequency (kHz) (

e The transfer function of a tube with no side branches, excited at
one end and response measured at another, only has poles

e The formant frequencies will have finite bandwidth when vocal
tract losses are considered (e.g., radiation, walls, viscosity, heat)

e The length of the vocal tract, £, corresponds to A1, 3A2, 243, ...,
where A; is the wavelength of the i'" natural frequency
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Standing Wave Patterns in a Uniform Tube

A uniform tube closed at one end and open at the other is often
referred to as a quarter wavelength resonator

glottis LI lips
U
SWP for W
= |
14
SWP for I/\/
F,
’ 2
3/ ¢
SWP for l/\/\/
F3
’ 2 4
3 50 !
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Natural Frequencies of Simple Acoustic Tubes

Z_I ° Z-I °

X = -1 x=20 X = -1 x=0

Quarter wavelength resonator Half-wavelength resonator
P(x, jQ)) = 2P, cos % P(x,jQ)) =—j2P, sin %
A Qx A Qx

Q) =—j—2P, sin — Q)= —2P —
U(x, jQ) JpC +SIn — U(x, jQ) e +COS —
Y_g =J.itan9—£ Y_£=—jiC0tQ—£

pC p C ,0(1:4 C |
szA =jQCy Ql/cx1 QOl/c <1

p—c2 ~J Qpl - QMy
Cs =AL/pc? = acoustic compliance My = p£/A = acoustic mass

C C
fn—ﬂ(Zn—l) n=1,2,... fn—ﬂn n=0,1,2,...
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Approximating Vocal Tract Shapes

.
.
.
.
.
.
.
»

L
—

(I -

[e— I —e— 1 ,—|
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Estimating Natural Resonance Frequencies

e Resonance frequencies occur where impedance (or admittance)
function equals natural (e.g., open circuit) boundary conditions

Us > ° .Az — U,
[e— |, —>fe— 1,—>| 41 [>

Y+ Y= 0

e For a two tube approximation it is easiest to solve for Y; +Y> =0

j’ﬂ tan —QEI —j& cot —ng =0
pC C pC C

. Qe . Qe, A QL QL
Sin —— sin - COS——cos——=0
C C A1 C C
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Decoupling Simple Tube Approximations

o IfA; > Ay, or A} < Ay, the tubes can be decoupled and natural
frequencies of each tube can be computed independently

e For the vowel //, the formant frequencies are obtained from:

< |, —> - I2—>
C C
fn—mn plus fn—%”

e At low frequencies:

C A, 12 1 1 1/2
f N 27T[A1£1£2] B ZW[CAIMAZ]

e This low resonance frequency is called the Helmholtz resonance
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Vowel Production Example

1 o
)

-
972 1093
2917
Formant Actual Estimated
F1 789 972
F2 1276 1093
F3 2808 2917
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2
1cm

0

|<— 9cm —>|<—60m—>|

I —
= I
268 1944 2917

Formant Actual Estimated

F1 256 268

F2 1905 1944

F3 2917 2917
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Example of Vowel Spectrograms
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Estimating Anti-Resonance Frequencies (Zeros)

Zeros occur at frequencies where there is no measurable output

o Iy o Agea —> U,

v

Yot B
Us—T> [ A +— . — Ao Ap Ac p A —U,
Yp YO
—= =
[« IIO >le— | —>] [— | —>f— | —>fe— | —]

e For nasal consonants, zeros in Uy occur where Yp = o0

e For fricatives or stop consonants, zeros in U; occur where the
impedance behind source is infinite (i.e., a hard wall at source)

[

Y1= 0 =—=> Y3+ Y4= 0

e Zeros occur when measurements are made in vocal tract interior

6.345 Automatic Speech Recognition Acoustic Theory of Speech Production 20



Consonant Production

.

[— | —>fe— | —>le— |, —>

POLES
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—|—+ — + T
I - =
Ap | Ac | Af || €p | €c | £y
gl| 5 [ 0.2 ]| 4 9 | 3 5
s]| 5 05| 4 |11 | 3 |25
[9] [s]
poles zeros poles zeros
215 0 306 0
1750 1944 1590 1590
1944 2916 3180 2916
3888 3888 3500 3180



Example of Consonant Spectrograms
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Perturbation Theory A
Yo ~—j—— for small£

!A -« pr

| -
e Consider a uniform tube, closed at one end and open at the other

| | >|
||

I AxX

e Reducing the area of a small piece of the tube near the opening
(where U is max) has the same effect as keeping the area fixed
and lengthening the tube

e Since lengthening the tube lowers the resonant frequencies,
narrowing the tube near points where U(x) is maximum in the
standing wave pattern for a given formant decreases the value of

that formant
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Perturbation Theory (cont’d)
AL

Eé: - Ye :jQpF for small £

- | |

e Reducing the area of a small piece of the tube near the closure
(where p is max) has the same effect as keeping the area fixed and
shortening the tube

e Since shortening the tube will increase the values of the formants,
narrowing the tube near points where p(x) is maximum in the
standing wave pattern for a given formant will increase the value
of that formant
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Summary of Perturbation Theory Results

glottis _*, lips glottis _*, lips
U ,
SWP forV AF, -\ ,
F1 i~
v ! (as a consequence of decreasing A)
SWP f AF ™ /\
F2 OrW 2 l \/%€ \
5 ‘
+
i /\
SWP f AF .
SAVAVEAR I oE S
2/ 4y
5 5
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lllustration of Perturbation Theory
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0.

of Perturbation Theory

Time (seconds)
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lllustration of Perturbation Theory

Time (seconds)
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Multi-Tube Approximation of the Vocal Tract

e We can represent the vocal tract as a concatenation of N lossless
tubes with constant area {Ax} and equal length Ax =£/N

: : - _ Ax __
e The wave propagation time through each tube is T = =% = {
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Wave Equations for Individual Tube

The wave equations for the k" tube have the form

pr(x, t) = f\—‘;[uzu - §> + U (t + §>]

Uk(x, t) = Uit —2%)—Ug(t+%)
where x is measured from the left-hand side (0 < x < Ax)

- |

U, (t) U:(t-r)I U () up, (t-T1)

- | —
Up (1) U (t+T) U (1) U, (t+1)

AX

k+1
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Update Expression at Tube Boundaries

We can solve update expressions using continuity constraints at
tube boundaries e.qg., pk(Ax, t) = pr+1(0, t), and Uk(AXx, t) = Uk+1(0, t)

s
U, (t) o—»— ——oU,,,(t-T)

Ul;(t) O——

o U, (14 )

kth tube (k+1)st tube

Ui () =1 + r Ul (t = 1) + U, (0)
Ug(t+T)=-r Ut =)+ (1 = rp)Up, ()

_ Aky1 — Ak
Ak+1 + Ak

Vi note | ry |<1
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Digital Model of Multi-Tube Vocal Tract

e Updates at tube boundaries occur synchronously every 2T
e If excitation is band-limited, inputs can be sampled every T =21
e Each tube section has a delay of z71/2

1
7 2 1+,
+ +
Uk(Z)C > O > O > —O Uk+1(Z)

U (z) o T O—<—0 - o U, ,(2)
ZZ 1_r

e The choice of N depends on the sampling rate T

£ 2£

e Series and shunt losses can also be introduced at tube junctions

— Bandwidths are proportional to energy loss to storage ratio

— Stored energy is proportional to tube length

6.345 Automatic Speech Recognition Acoustic Theory of Speech Production 32



Assignment 1

laminar
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