Lecture # 21

Speaker Ad aptatlon Session 2003

Lecturer: T. J. Hazen

e Qverview

 Adaptation Methods
— Vocal Tract Length Normalization
— Bayesian Adaptation
— Transformational Adaptation
— Reference Speaker Weighting
— Eigenvoices
— Structural Adaptation
— Hierarchical Speaker Clustering
— Speaker Cluster Weighting

e Summary
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Typical Digital Speech Recording
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Accounting for Variability

 Recognizers must account for variability in speakers
« Standard approach: Speaker Independent (Sl) training
— Training data pooled over many different speakers
 Problems with primary modeling approaches:
— Models are heterogeneous and high in variance
— Many parameters are required to build accurate models
— Models do not provide any speaker constraint
— New data may still not be similar to training data
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Providing Constraint

 Recognizers should also provide constraint:
— Sources of variation typically remain fixed during utterance
— Same speaker, microphone, channel, environment
 Possible Solutions:
— Normalize input data to match models (i.e., Normalization)
— Adapt models to match input data (i.e., Adaptation)
 Key ideas:
— Sources of variability are often systematic and consistent
— A few parameters can describe large systematic variation
— Within-speaker correlations exist between different sounds
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Probabilistic Framework

 Acoustic model predicts likelihood of acoustic observations
given phonetic units:

P(AJU)=P(a,,a,,...,ay|u,,u,,...,u.)

 An independence assumption is typically required in order to
make the modeling feasible:

P(AIU)=ZP(5i |U)

 This independence assumption can be harmful!
— Acoustic correlations between phonetic events are ignored
— No constraint provided from previous observations
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Variability and Correlation

* Plot of isometric likelihood contours for phones [i] and [€e]
 One SI model and two speaker dependent (SD) models
« SD contours are tighter than Sl and correlated w/ each other
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Vocal Tract Length Normalization

« Vocal tract length affects formant frequencies:
— shorter vocal tracts = higher formant frequencies
— longer vocal tracts = lower formant frequencies

* Vocal tract length normalization (VTLN) tries to adjust input
speech to have an “average” vocal tract length

« Method: Warp the frequency scale!
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Vocal Tract Length Normalization (cont)

)
A

e |llustration: second
formant for [e] and [i]

Sl models have large overlap
(error region)

« SD models have smaller
variances & error region

 Warp spectrums of all
training speakers to best
fit SI model

e Train VTLN-SI model

« Warp test speakers to fit
VTLN-SI model
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Vocal Tract Length Normalization

* During testing ML approach is used to find warp factor:

Y =argmax P(X" Oy n)

« Warp factor is found using brute force search

— Discrete set of warp factors tested over possible range
 References:

— Andreou, Kamm, and Cohen, 1994

— Lee and Rose, 1998

6.345 Automatic Speech Recognition Speaker Adaptation 9



Speaker Dependent Recognition

« Conditions of experiment:
— DARPA Resource Management task (1000 word vocabulary)
— SUMMIT segment-based recognizer using word pair grammar
— Mixture Gaussian models for 60 context-independent units:
— Speaker dependent training set:
* 12 speakers w/ 600 training utts and 100 test utts per speaker
* ~80,000 parameters in each SD acoustic model set
— Speaker independent training set:
* 149 speakers w/ 40 training utts per speaker (5960 total utts)
* ~400,000 parameters in Sl acoustic model set

 Word error rate (WER) results on SD test set:
— Sl recognizer had 7.4% WER
— Average SD recognizer had 3.4% WER
— SD recognizer had 50% fewer errors using 80% fewer parameters!
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Adaptation Definitions

o Speaker dependent models don’t exist for new users
 System must learn characteristics of new users

 Types of adaptation:
— Enrolled vs. instantaneous

* |s a prerecorded set of adaptation data utilized or is test data used as
adaptation data?

— Supervised vs. unsupervised
* Is orthography of adaptation data known or unknown?
— Batch vs. on-line
* |s adaptation data presented all at once or one at a time?
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Adaptation Definitions (cont)

 Goal: Adjust model parameters to match input data
* Definitions:
— X is a set of adaptation data

— A is a set of adaptation parameters, such as:
* Gender and speaker rate
* Mean vectors of phonetic units
* Global transformation matrix

— @ is a set of acoustic model parameters used by recognizer
 Method:

— A is estimated from X
— ® is adjusted based on A
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Adaptation Definitions (cont)

« Obtaining A is an estimation problem:
— Few adaptation data points = small # of parameters in A

— Many adaptation data points = larger # of parameters in A
« Example:

— Suppose A contains only a single parameter A
— Suppose A represents the probability of speaker being male

— A is estimated from the adaptation data X
— The speaker adapted model could be represented as:

P(a]Og,) =AP(a| O e ) + (1-2)P(a] Oy )

male
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Bayesian Adaptation

A method for direct adaptation of models parameters
Most useful with large amounts of adaptation data
A.k.a. maximum a posteriori probability (MAP) adaptation

General expression for MAP adaptation of mean vector of a single
Gaussian density function:

0= arg max p(p|X) =arg max p(ulX,,....Xy)

Apply Bayes rule:

i =arg max PX )P (1) ]

[ A

observation a priori
likelihood model
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Bayesian Adaptation (cont)

« Assume observations are independent:
N
PX ) =p(X,,.... Xy 1) = Hp(xn | )
n=1
e Likelihood functions modeled with Gaussians:
p(X|1)=N(;S)  P(R)=N(p,,:S;,)
« Adaptation parameters found from X:

N
A:{ﬁml’N} ﬁmlzﬁzxn
n=1

maximum likelihood
(ML) estimate
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Bayesian Adaptation (cont)

 The MAP estimate for a mean vector is found to be:

« The MAP estimate is an interpolation of the ML estimates mean
and the a priori mean:

— If N is small: Flmap ~ ﬁap
— If N'is large: ﬁmap ~ Flml

« MAP adaptation can be expanded to handle all mixture Gaussian
parameters

— Reference: Gauvain and Lee, 1994
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Bayesian Adaptation (cont)

 Advantages to MAP:

— Based on solid mathematical framework

— Converges to speaker dependent model in limit
 Disadvantages to MAP:

— Adaptation is very slow due to independence assumption

— Is sensitive to errors during unsupervised adaptation
 Model interpolation adaptation approximates MAP

— Requires no a priori model

— Also converges to speaker dependent model in limit

— Expressed as:

psa(in I U) — NTK pml ()_{n I U) T NfK psi (Xn I U)

I I

K determined empirically
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Bayesian Adaptation (cont)

o Supervised adaptation Resource Management SD test set:
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Transformational Adaptation

e Transformation techniques are most common form of adaptation

being used today!

« Idea: Adjust models parameters using a transformation shared
globally or across different units within a class

e Global mean vector translation:
— Sa gy —
Hp =Hp TV

?

ad apt mean vectors

shared

of all phonetic models translation vector

 Global mean vector scaling, rotation and translation:

vp g;a:?:gw

shared scaling
and rotation matrix
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Transformational Adaptation (cont)

Sl model rotated, scaled and translated to match SD model:
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Transformational Adaptation (cont)

Transformation parameters found using ML estimation:

[R,v]=arg max p(X|R.v)

Advantages:

— Models of units with no adaptation data are adapted based on
observations from other units

— Requires no a priori model (This may also be a weakness!)
Disadvantages:

— Performs poorly (worse than MAP) for small amounts of data
— Assumes all units should be adapted in the same fashion

Technique is commonly referred to as maximum likelihood linear
regression (MLLR)

— Reference: Leggetter & Woodland, 1995
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Reference Speaker Weighting

* Interpolation of models from “reference speakers”
— Takes advantage of within-speaker phonetic relationships

« Example using mean vectors from training speakers:
— Training data contains R reference speakers
— Recognizer contains P phonetic models
— A mean is trained for each model P and each speaker I ﬁp,r

— A matrix of speaker vectors is created from trained means:

__> — __> f_>_\_
Hir Hi1 = [H1R
m =| M = |
 Hpr | Hp1 o (HpPR
Speaker vector Speaker matrix each column is

a speaker vector
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Reference Speaker Weighting (cont)

Goal is to find most likely speaker vector for new speaker
 Find weighted combination of reference speaker vectors:

m. = MW
« Maximum likelihood estimation of weighting vector:

W =argmaxp(X|M,w)

 Global weighting vector is robust to errors introduced during
unsupervised adaptation

» lterative methods can be used to find the weighting vector
— Reference: Hazen, 1998
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Reference Speaker Weighting (cont)

« Mean vector adaptation w/ one adaptation utterance:
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Unsupervised Adaptation Architecture

* Architecture of unsupervised adaptation system:

waveform

-

S| Recognizer

lbest path

Speaker
Adaptation

ladaptation parameters

hypothesis -

SA Recognizer

* In off-line mode, adapted models used to re-recognize original

waveform

— Sometimes called instantaneous adaptation
 Inon-line mode, SA models used on next waveform
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Unsupervised Adaptation Experiment

 Unsupervised, instantaneous adaptation

— Adapt and test on same utterance

— Unsupervised = recognition errors affect adaptation

— Instantaneous = recognition errors are reinforced

Adaptation Method WER Reduction
Sl 8.6%
MAP Adaptation 8.5% 0.8%
RSW Adaptation 8.0% 6.5%

e RSW is more robust to errors than MAP
— RSW estimation is “global” = uses whole utterance
— MAP estimation is “local” = uses one phonetic class only
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Elgenvoices

 Eigenvoices extends ideas of Reference Speaker Weighting

— Reference: Kuhn, 2000

« Goalisto learn uncorrelated features of the speaker space

 Begin by creating speaker matrix:

 Perform Eigen (principal components) analysis on M

M

Hi1

| Hp 1

HiRr

— Each Eigenvector represents an independent (orthogonal)

dimension in the speaker space

— Example dimensions this method typically learns are gender,
loudness, monotonicity, etc.
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Elgenvoices (cont)

 Find R eigenvectors:

E

— {éo’él”éR}

 New speaker vector is combination of top N eigenvectors:

—

Dimension 2
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Elgenvoices (cont)

 Adaptation procedure is very similar to RSW:
W =argmaxp(X|E,w)
W

 Eigenvoices adaptation can be very fast
— A few eigenvectors can generalize to many speaker types

— Only a small number of phonetic observations required to achieve
significant gains
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Structural Adaptation

« Adaptation parameters organized in tree structure
— Root node is global adaptation

— Branch nodes perform adaptation on shared classes of models
— Leaf nodes perform model specific adaptation

Global: Oy <—

Adaptation parameters
learned for each node in tree

Consonants: ®- « Each node has a weight: W, .

 Weights based on availability
of adaptation data

e Each path from root to leaf
follows this constraint:

Z Wnode = 1

vnode epath

Vowels: ©,,

Front Vowels: O,

leyl: @,  liyl: O
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Structural Adaptation

o Structural adaptation based on weighted combination of
adaptation performed at each node in tree:

psa (;( I U,tree) — Z Wnodep(;( I u’®node)

vnodesepath(u)

o Structural adaptation has been applied to a variety of speaker
adaptation techniques:

— MAP (Reference: Shinoda & Lee,1998)

— RSW (Reference: Hazen, 1998)

— Eigenvoices (Reference: Zhou & Hanson, 2001)
— MLLR (Reference: Siohan, Myrvoll & Lee, 2002)
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Hierarchical Speaker Clustering

 |dea: Use model trained from cluster of speakers most similar to
the current speaker

 Approach:
— A hierarchical tree is created using speakers in training set
— The tree separates speakers into similar classes
— Different models build for each node in the tree
— A test speaker is compared to all nodes in tree
— The model of the best matching node is used during recognition

e« Speakers can be clustered...
— ...manually based on predefined speaker properties
— ...automatically based on acoustic similarity
 References:
— Furui, 1989
— Kosaka and Sagayama, 1994
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Hierarchical Speaker Clustering

« Example of manually created speaker hierarchy:

All speakers

Male Gender Female

Fast Average Slow Fast Average  Slow

Speaking Rate
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Hierarchical Speaker Clustering (cont)

 Problem: More specific model = less training data
 Tradeoff between robustness and specificity
 One solution: interpolate general and specific models

« Example combining ML trained gender dependent model with Sl
model to get interpolated gender dependent model:

Pigd (Xn ju=p)= kpmlgd (Xn lu=p)+ (l_}‘*)psi (Xn lu=p)

e A values found using the deleted interpolation
— Reference: X.D. Huang, et al, 1996
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Spéaker Cluster Weighting

Hierarchical speaker clustering chooses one model
Speaker cluster weighting combines models:

M
psa(xn | U= p) — Zwmpm(xn | U= p)
m=1

Weights determined using EM algorithm
Weights can be global or class-based
Advantage: Soft decisions less rigid than hard decisions
— Reference: Hazen, 2000
Disadvantage:
— Model size could get too large w/ many clusters
— Need approximation methods for real-time
— Reference: Huo, 2000
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Speaker Clustering Experiment

 Unsupervised instantaneous adaptation experiment

— Resource Management Sl test set
o Speaker cluster models used for adaptation:

— 1 Sl model
— 2 gender dependent models

— 6 gender and speaking rate dependent models

Models WER Reduction
S 8.6%
Gender Dependent 7.7% 10.5%
Gender & Rate Dependent 7.2% 16.4%
Speaker Cluster Interpolation 6.9% 18.9%
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Final Words

 Adaptation improves recognition by constraining models to
characteristics of current speaker

 Good properties of adaptation algorithms:
— account for a priori knowledge about speakers
— be able to adapt models of units which are not observed
— adjust number of adaptation parameters to amount of data
— be robust to errors during unsupervised adaptation

« Adaptation is important for “real world” applications
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