Lecture # 23 Session 2003 Paralinguistic Information Processing

- Prosody
 - Pitch tracking
 - Intonation, stress, and phrase boundaries
 - Emotion
- Speaker Identification
- Multi-modal Processing
 - Combined face and speaker ID
 - Lip reading & audio-visual speech recognition
 - Gesture & multi-modal understanding

- Prosody is term typically used to describe the extra-linguistic aspects of speech, such as:
 - Intonation
 - Phrase boundaries
 - Stress patterns
 - Emotion
 - Statement/question distinction
- Prosody is controlled by manipulation of
 - Fundamental frequency (F₀)
 - Phonetic durations & speaking rate
 - Energy

Robust Pitch Tracking

- Fundamental frequency (F₀) estimation
 - Often referred to as *pitch tracking*
 - Crucial to the analysis and modeling of speech prosody
 - A widely studied problem with many proposed algorithms
- One recent two-step algorithm (Wang, 2001)
 - Step 1: Estimate F₀ and △F₀ frame each speech frame based on harmonic matching
 - Step 2: Perform dynamic search with continuity constraints to find optimal F₀ stream

Discrete Logarithmic Fourier Transform

- Logarithmically sampled narrow-band spectrum
 - Harmonic peaks have fixed spacing (logF₀ + logN)
 - Derive F0 and Δ F0 estimates through correlation

Two Correlation Functions

Dynamic Programming Search

- Optimal solution taking into account F_0 and ΔF_0 constraints
- Search space quantized such that Δ F/F is constant

$$score_{t}(i) = \begin{cases} \max_{j} \{score_{t-1}(j) \cdot R_{X_{t}X_{t-1}}(i-j)\} + R_{TX_{t}}(i-c) & (t > 0) \\ R_{TX_{0}}(i-c) & (t = 0) \end{cases}$$
$$R_{XX} : \text{cross - frame correlation}, \quad R_{TX} : \text{template - frame correlation} \end{cases}$$

The Rhythmic Nature of Speech

- Example using two read digit string types in Chinese
 - Random digit strings (5-10 digits per string)
 - Phone numbers (9 digits, e.g., 02 435 8264)
- Both types show a declination in pitch (i.e. sentence downdrift)
- Phone numbers show a predictable pattern or rhythm

Local Tones vs. Global Intonation

• Position-dependent tone contours in phone numbers

Characterization of Phrase Contours

- Phrases often carry distinction F₀ contours
- Canonical patterns for specific phrases can be observed
- Some research conducted into characterizing prosodic contours
 - Phrase boundary markers
 - TOBI (Tone and Break Indices) labeling
- Many unanswered questions
 - Do phrases have some set of predictable canonical patterns ?
 - How does prosodic phrase structures generalize to new utterances?
 - Are there interdependencies among phrases in the utterance ?
 - How can prosodic modeling help speech recognition and/or understanding ?

Pilot Study of Phrasal Prosody in JUPITER

- Five phrase types were studied:
 - <what_is>: what is, how is, ...
 - <tell_me>: tell me, give me, ...
 - <weather>: weather, forecast, dew point, ...
 - <SU>: Boston, Monday, ...
 - <US>: Detroit, tonight, ...
- Phrases studied with a fixed sentence template:

<what_is> | <tell_me> the <weather> in | for | on <SU> | <US>

- Pitch contours for each example phrase were automatically clustered into several subclasses
- Mutual information of subclasses can predict which subclasses are likely or unlikely to occur together in an utterance

Subclasses Obtained by Clustering

• K-means clustering on training data followed by selection

Example Utterances

6.345 Automatic Speech Recognition

Paralinguistic Information Processing 12

Mutual Information of Subclasses

Emotional Speech

- Emotional speech is difficult to recognize:
 - Neutral speech word error rate in Mercury: 15%
 - WER of "happy" speech in Mercury: 25%
 - WER of "frustrated" speech: 33%
- Acoustic correlates of emotional/frustrated speech:
 - Fundamental frequency variation 🌾
 - Increased energy 🍕
 - Speaking rate & vowel duration
 - Hyper-articulation 🌾
 - Breathy sighs
- Linguistic content can also indicate frustration:
 - Questions 🀗
 - Negative constructors
 - Derogatory terms 🌾

Spectrograms of an Emotional Pair

6.345 Automatic Speech Recognition

Emotion Recognition

- Few studies of automatic emotional recognition exist
- Common features used for utterance-based emotion recognition:
 - Fo features: mean, median, min, max, standard deviation
 - Fo features: mean positive slope, mean negative slope, std. deviation, ratio of rising and falling slopes
 - Rhythm features: speaking rate, duration between voiced regions
- Some results:
 - 75% accuracy over six classes (happy, sad, angry, disgusted, surprised, fear) using only mean and standard deviation of F₀ (Huang et al, 1998)
 - 80% accuracy over fours classes (happy, sad, anger, fear) using 16 features (Dellaert *et al*, 1998)

Speaker Identification

- Speaker verification: Accept or reject claimed identity
 - Typically used in applications requiring secure transactions
 - Not 100% reliable
 - * Speech is highly variable and easily distorted
 - Can be combined with other techniques
 - * Possession of a physical "key"
 - * Knowledge of a password
 - * Face ID or other biometric techniques
- Speaker recognition: Identify speaker from set of known speakers
 - Typically used when speakers do not volunteer their identity
 - Example applications:
 - * Meeting transcription and indexing
 - * Voice mail summarization
 - * "Power users" of dialogue system

Speaker Identification Approaches

- Potential features used for speaker ID
 - Formant frequencies (correlated with vocal tract length)
 - Fundamental frequency averages and contours
 - Phonetic durations and speaking rate
 - Word usage patterns
 - Spectral features (typically MFCCs) are most commonly used
- Some modeling approaches:
 - Text Independent
 - * Global Gaussian Mixture Models (GMMs) (Reynolds, 1995)
 - * Phonetically-Structured GMMs
 - Text/Recognition Dependent
 - * Phonetically Classed GMMs
 - * Speaker Adaptive ASR Scoring (Park and Hazen, 2002)

Training

- Input waveforms for speaker "i" split into fixed-length frames
- Feature vectors computed from each frame of speech
- GMMs trained from set of feature vectors
- One global GMM per speaker

Testing

- Input feature vectors scored against each speaker GMM
- Frame scores for each speaker summed over entire utterance
- Highest total score is hypothesized speaker

 $p(x_1|S_i) + p(x_2|S_i) = \text{score for speaker "i"}$

Phonetically-Structured GMM

- During training, use phonetic transcriptions to train phonetic class GMMs for each speaker
- Combine class GMMs into a single "structured" model which is then used for scoring as in the baseline system

Phonetic Classing

- Train independent phone class GMMs w/o combination
- Generate word/phone hypothesis from recognizer
- Score frames with class models of hypothesized phones

Speaker Adapted Scoring

- Train speaker-dependent (SD) models for each speaker
- Get best hypothesis from recognizer using speakerindependent (SI) models
- Rescore hypothesis with SD models
- Compute total speaker adapted score by interpolating SD score with SI score

Two Experimental Corpora

Corpus	ҮОНО	Mercury
Description	LDC corpus for speaker verification evaluation	SLS corpus from air-travel system
Type of Speech	Prompted Text "Combination lock" phrases (e.g. "34-25-86")	Spontaneous conversational speech in air-travel domain
# Speakers	138 (106M, 32F)	38 (18M, 20F)
Recording Conditions	Fixed telephone handset Quiet office environment 8kHz band-limited	Variable telephone Variable environment Telephone channel
Training Data	96 utterances From 4 sessions (~3 seconds each)	50-100 utterances From 2-10 sessions (variable length)
Test Set Size	5520	3219

- Experiment: closed set speaker recognition on single utterances
- Results:

Swotom	Speaker ID Error Rate%		
System	ҮОНО	Mercury	
Structured GMM (SGMM)	0.31	21.3	
Phone Classing	0.40	21.6	
Speaker Adaptive (SA)	0.31	27.8	
SA+SGMM	0.25	18.3	

- All approaches about equal on YOHO corpus
- Speaker adaptive approach has poorest performance on Mercury

 ASR recognition errors can degrade speaker ID performance
- Classifier combination yields improvements over best system

Results on Multiple Mercury Utterances

- On multiple utterances, speaker adaptive scoring achieves lower error rates than next best individual method
- Relative error rate reductions of 28%, 39%, and 53% on 3, 5, and 10 utterances compared to baseline

- Multimodal interfaces will enable more natural, flexible, efficient, and robust human-computer interaction
 - Natural: Requires no special training
 - Flexible: Users select preferred modalities
 - Efficient: Language and gestures can be simpler than in uni-modal interfaces (e.g., Oviatt and Cohen, 2000)
 - Robust: Inputs are complementary and consistent
- Audio and visual signals both contain information about:
 - Identity of the person: Who is talking?
 - Linguistic message: What are they saying?
 - Emotion, mood, stress, etc.: How do they feel?
- Integration of these cues can lead to enhanced capabilities for future human computer interfaces

Face/Speaker ID on a Handheld Device

- An iPaq handheld with Audio/Video Input/Output has been developed as part of MIT Project Oxygen
- Presence of multiple-input channels enables multi-modal verification schemes
- Prototype system uses a login scenario
 - Snap frontal face image
 - State name
 - Recite prompted lock combination phrase
 - System accepts or rejects user

Face Identification Approach

- Face Detection by Compaq/HP (Viola/Jones, CVPR 2001)
 - Efficient cascade of classifiers
- Face Recognition by MIT AI Lab/CBCL (Heisele et al, ICCV 2001)
 - Based on Support Vector Machines (SVM)
 - Runtime face recognition: score image against each SVM classifier
- Implemented on iPaq handheld as part of MIT Project Oxygen (E. Weinstein, K. Steele, P. Ho, D. Dopson)

Combined Face/Speaker ID

- Multi-modal user login verification experiment using iPaq
- Enrollment data:
 - Training data collected from 35 enrolled users
 - 100 facial images and 64 lock combination phrases per user
- Test data:
 - 16 face/image pairs from 25 enrolled users
 - 10 face/image pairs from 20 non-enrolled imposters
- Evaluation metric: verification equal error rate (EER)
 - Equal likelihood of false acceptances and false rejections
 - Fused system reduces equal error rate by 50%

System	Equal Error Rate	
Face ID Only	7.30%	
Speech ID Only	1.77%	
Fused System	0.89%	

How can we improve ASR performance?

- Humans utilize facial expressions and gestures to augment
 the speech signal
- Facial cues can improve speech recognition in noise by up to 30 dB, depending on the task
- Speech recognition performance can be improved by incorporating facial cues (e.g., lip movements and mouth opening)
- Figure shows human recognition performance
 - Low signal-to-noise ratios
 - Presented with audio with video and audio only
 - Reference: Benoit, 1992

Audio Visual Speech Recognition (AVSR)

- Integrate information about visual mouth/lip/jaw features with features extracted from audio signal
- Visual feature extraction:
 - Region of Interest (ROI): mostly lips and mouth; some tracking
 - Features: pixel-, geometric-, or shape-based
 - Almost all systems need to locate and track landmark points
 - Correlation and motion information not used explicitly

Example of pixel-based features (Covell & Darrell, 1999)

AVSR: Preliminary Investigations

- Goal: integration with SUMMIT ASR system
- Visually-derived measurements based on optical flow

Low-dimensional features represent opening & elongation

Issues with Audio/Visual Integration

- Early vs. Late Integration
 - Early: concatenate feature vectors from different modes
 - Late: combine outputs of uni-modal classifiers
 - * Can be at many levels (phone, syllable, word, utt)
- Channel Weighting Schemes
 - Audio channel usually provides more information
 - Based on SNR estimate for each channel
 - Preset weights by optimizing the error rate of a dev. set
 - Estimate separate weights for each phoneme or viseme
- Modeling the audio/visual asynchrony
 - Many visual cues occur before the phoneme is actually pronounced
 - Example: rounding lips before producing rounded phoneme

- Example: Neti et al, 2000 (JHU Summer Workshop)
 - >10K word vocabulary
 - Training and development data: 264 subjects, 40 hours
 - Test data: 26 subjects, 2.5 hours
 - Quiet (19.5 dB SNR) and noisy (8.5 dB SNR) conditions

Conditions	Clean WER (%)	Noisy WER (%)
Audio Only	14.4	48.1
AVSR	13.5	35.3

Multi-modal Interaction Research

- Understanding the science
 - How do humans do it (e.g. expressing cross modality context)?
 - What are the important cues?
- Developing an architecture that can adequately describe the interplays of modalities

6.345 Automatic Speech Recognition

• Inputs need to be understood in the proper context

What does he mean by "any," and what is he pointing at?

Does this mean "yes," "one," or something else?

• Timing information is a useful way to relate inputs

Where is she looking or pointing at while saying "this" and "there"?

Multi-modal Fusion: Initial Progress

- All multi-modal inputs are synchronized
 - Speech recognizer generates absolute times for words
 - Mouse and gesture movements generate {x,y,t} triples
- Speech understanding constrains gesture interpretation
 - Initial work identifies an object or a location from gesture inputs
 - Speech constrains what, when, and how items are resolved
 - Object resolution also depends on information from application

Multi-modal Demonstration

- Manipulating planets in a solar-system application
- Continuous tracking of mouse or pointing gesture
- Created w. SpeechBuilder utility with small changes (Cyphers, Glass, Toledano & Wang)
- Standalone version runs with mouse/pen input
- Can be combined with gestures from determined from vision (Darrell & Demirdjien)

Recent Activities: Multi-modal Server

Summary

- Speech carries paralinguistic content:
 - Prosody, intonation, stress, emphasis, etc.
 - Emotion, mood, attitude,etc.
 - Speaker specific characteristics
- Multi-modal interfaces can improve upon speech-only systems
 - Improved person identification using facial features
 - Improved speech recognition using lip-reading
 - Natural, flexible, efficient, and robust human-computer interaction

- C. Benoit, "The intrinsic bimodality of speech communication and the synthesis of talking faces," *Journal on Communications*, September 1992.
- M. Covell and T. Darrell, "Dynamic occluding contours: A new external-energy term for snakes," *CVPR*, 1999.
- F. Dellaert, T. Polzin, and A. Waibel, "Recognizing emotion in speech," *ICSLP*, 1998.
- B. Heisele, P. Ho, and T. Poggio, "Face recognition with support vector machines: Global versus component-based approach," *ICCV*, 2001.
- T. Huang, L. Chen, and H. Tao, "Bimodal emotion recognition by man and machine," *ATR Workshop on Virtual Communication Environments*, April 1998.
- C. Neti, et al, "Audio-visual speech recognition," Tech Report CLSP/Johns Hopkins University, 2000.
- S. Oviatt and P. Cohen, "Multimodal interfaces that process what comes naturally," *Comm. of the ACM*, March 2000.
- A. Park and T. Hazen, "ASR dependent techniques for speaker identification," *ICSLP*, 2002.
- D. Reynolds, "Speaker identification and verification using Gaussian mixture speaker models," *Speech Communication*, August 1995.
- P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features," *CVPR*, 2001.
- C. Wang, "Prosodic modeling for improved speech recognition and understanding," PhD thesis, MIT, 2001.
- E. Weinstein, *et al*, "Handheld face identification technology in a pervasive computing environment," *Pervasive 2002.*